1 Homework 4.

1. Suppose A is an integral domain and M is an A-module. Let

$$Tor(M) := \{ m \in M \mid \exists a \in A \setminus \{0\}, am = 0 \}.$$

- (a) Prove that Tor(M) is a submodule of M.
- (b) Prove that Tor(M/Tor(M)) = 0; we say M/Tor(M) is torsion-free.
- 2. In this problem, you will need basic properties of the determinant function that I summarize here. For $[a_{ij}] \in M_n(A)$, let

$$\det[a_{ij}] := \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \prod_{i=1}^n a_{i\sigma(i)},$$

where S_n is the symmetric group and sgn : $S_n \to \{\pm 1\}$ is the sign function. The (ℓ, k) -minor of $x := [a_{ij}]$ is the determinant of the (n - 1)-by-(n - 1) matrix $x(\ell, k)$ obtained after removing the ℓ -th row and the k-th column of x. Let

$$\operatorname{adj}(x) := [(-1)^{i+j} \det x(j,i)] \in \mathcal{M}_n(A);$$

this is called the adjugate of A. Here are the main properties of det and adj.

- (a) det is multi-linear with respect to the columns and rows.
- (b) det(I) = 1.
- (c) If x has two identical columns or rows, then $\det x = 0$.
- (d) For all $x, y \in M_n(A)$, $\det(xy) = \det(x) \det(y)$.
- (e) $\operatorname{adj}(x)x = x \operatorname{adj}(x) = \operatorname{det}(x)I$.

For every A-module homomorphism $\phi : A^n \to A^n$, similar to linear maps, we can associate a matrix $x_{\phi} \in M_n(A)$; the *i*-th column of x_{ϕ} is given by the vector $\phi(e_i)$, where e_i has 1 at the *i*-th component and 0 at the other components. In this setting, ϕ is an A-module isomorphism if and only if x_{ϕ} is a unit in $M_n(A)$.

(a) Prove that x is a unit in $M_n(A)$ if and only if det $x \in A^{\times}$.

- (b) Suppose $\phi : A^n \to A^n$ is an A-module. Prove that the following statements are equivalent.
 - i. ϕ is surjective.
 - ii. For all maximal ideals \mathfrak{m} of A, the induced A/\mathfrak{m} -linear map

 $\overline{\phi}: (A/\mathfrak{m})^n \to (A/\mathfrak{m})^n, \quad \overline{\phi}(x+\mathfrak{m}^n):=\phi(x)+\mathfrak{m}^n$

is a well-defined bijection.

iii. ϕ is bijective.

(**Hint**. For linear maps from a vector space to itself, we know that surjectivity implies injectivity. So the first part implies the second part. To show the third part, suppose $det(x_{\phi})$ is not a unit, and deduce that there exists a maximal ideal such that x_{ϕ} modulo \mathfrak{m} is not invertible.)

3. Suppose A is a unital commutative ring and $\phi : A^n \to A^m$ is a surjective A-module homomorphism. Prove that $n \ge m$.

(**Hint**. Think about $\overline{\phi} : (A/\mathfrak{m})^n \to (A/\mathfrak{m})^m$.)

- 4. An A-module M is called Noetherian if the following equivalent statements hold.
 - (a) Every chain $\{N_i\}_{i \in I}$ of submodules of M has a maximum.
 - (b) Every non-empty family of submodules of M has a maximal element.
 - (c) The ascending chain condition holds in M; that means if

$$N_1 \subseteq N_2 \subseteq \cdots$$

are submodules of M, then there exists i_0 such that

$$N_{i_0}=N_{i_0+1}=\cdots.$$

(d) All the submodules of M are finitely generated.

Use a similar argument as in the case for rings and show that the above statements are equivalent; you do not need to submit this as part of your HW assignment. Notice that a ring A is Noetherian if and only if it is a Noetherian A-module.

- (a) Suppose N is a submodule of M. Prove that M is Noetherian if and only if M/N and N are Noetherian.
- (b) Suppose A is a Noetherian ring and M is a finitely generated A-module. Prove that M is Noetherian.
- 5. Suppose A is a unital commutative ring and $\phi : A^n \to A^m$ is an injective A-module homomorphism.
 - (a) Suppose A is a Noetherian ring. Prove that $n \leq m$.
 - (b) Prove that $n \leq m$ even if A is not Noetherian.

(**Hint**. For the first part, suppose to the contrary that n > m and write A^n as $A^m \oplus A^{n-m}$. This way, you can view the image of ϕ as a submodule of A^n and

$$\phi(A^n) \oplus A^{n-m} \subseteq A^n.$$

Because ϕ is injective, we obtain that

$$\phi^2(A^n) \oplus \phi(A^{n-m}) \oplus A^{n-m} \subseteq A^n.$$

Repeating this argument, for every positive integer k, we obtain the following (internal) direct sum:

$$\phi^k(A^n) \oplus \phi^{k-1}(A^{n-m}) \oplus \dots \oplus \phi(A^{n-m}) \oplus A^{n-m} \subseteq A^n.$$

Hence,

$$A^{n-m} \subsetneq A^{n-m} \oplus \phi(A^{n-m}) \subsetneq A^{n-m} \oplus \phi(A^{n-m}) \oplus \phi^2(A^{n-m}) \subsetneq \cdots,$$

which is a contradiction.

For the second part, let $x_{\phi} \in M_{m,n}(A)$ be the matrix associated with ϕ . Let A_0 be the subring of A which is generated by 1 and entries of x_{ϕ} . Notice that since ϕ is given by matrix multiplication by x_{ϕ} , its restriction to A_0^n gives us an A_0 -module homomorphism from A_0^n to A_0^m . Because ϕ is injective, so is its restriction to A_0^n . Argue why A_0 is Noetherian, and deduce that $n \leq m$.

Remark. During lecture, we used field of fractions and gave a much easier proof when A is an integral domain.

6. Suppose A is a unital commutative ring and M is a finitely generated A-module. Let

d(M) := minimum number of generators of M,

and

 $\operatorname{rank}(M) := \operatorname{maximum}$ number of linearly independent elements of M.

Prove that $\operatorname{rank}(M) \leq d(M)$.

(**Hint**. Suppose d(M) = n and rank(M) = m. Then there exist a surjective A-module homomorphism

$$\phi: A^n \to M$$

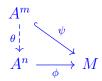
and an injective A-module homomorphism

$$\psi: A^m \to M.$$

Suppose $\{e_i\}_{i=1}^m$ is the standard A-base of A^m . Deduce that there exist $v_i \in A^n$ such that

$$\phi(v_i) = \psi(e_i)$$

for all *i*. Let $\theta : A^m \to A^n$ be the *A*-module homomorphism given by $\theta(e_i) = v_i$ for all *i*. Then the following diagram commutes.



Deduce that θ is injective.)

- 7. Suppose A is a unital commutative ring and M is a finitely generated Amodule. Suppose $d(M) = \operatorname{rank}(M) = n$.
 - (a) Suppose A is Noetherian. Prove that $M \simeq A^n$.
 - (b) Prove that $M \simeq A^n$ even if A is not Noetherian.

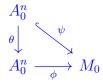
(**Hint**. Similar to the previous problem, get a commutative diagram

where ψ is injective and ϕ is surjective, and obtain that θ is injective. Use injectivity of ψ and deduce that the following is an internal direct sum

$$\theta(A^n) \oplus \ker \phi \subseteq A^n$$
.

Use an argument similar to problem 5(a) to deal with the Noetherian case; show that if ker $\phi \neq 0$, we get a contradiction.

To show the general case, again suppose to the contrary that there exists $\mathbf{x} := (x_1, \ldots, x_n) \in \ker \phi \setminus \{0\}$. Let $x_{\theta} \in M_n(A)$ be the matrix associated with θ . Let A_0 be the subring of A which is generated by 1, x_i 's, and entries of x_{θ} . Let $M_0 := \phi(A_0^n)$. Argue why we have the following commutative diagram



and θ and ψ are injective, and $\mathbf{x} \in \ker \phi$. Discuss why A_0 is Noetherian, and obtain a contradiction.)

Remark. There is a much easier argument when A is an integral domain. Think about that case.