1 Homework 3.

1. Prove that the following polynomials are irreducible.
(a) $f(x):=x^{p-1}+x^{p-2}+\cdots+1$ where p is a prime number.
(b) $g(x, y):=x^{p-1}+q_{2}(y) x^{p-2}+\cdots+q_{p-1}(y)$ in $\mathbb{Q}[x, y]$ where p is prime and $q_{i}(y)$'s are in $\mathbb{Q}[y]$ such that $q_{i}(1)=1$ for all i.
(c) $h(x):=1+\frac{x}{1!}+\cdots+\frac{x^{p}}{p!}$ in $\mathbb{Q}[x]$ where p is prime.
(d) $k(x, y):=x^{n}-y$ in $F[x, y]$ where F is a field.
(e) $p(x, y):=x^{2}+y^{2}-2$ in $F[x, y]$ where F is a field and its characteristic is not 2 .
(f) $q(x):=x^{4}+12 x^{3}-9 x+6$ in $\mathbb{Q}[i][x]$.
(g) Suppose n is a positive odd integer. Prove that

$$
r(x):=(x-1)(x-2) \cdots(x-n)+1
$$

is irreducible in $\mathbb{Q}[x]$.
(Hint. (a) Argue that $f(x)$ is irreducible precisely when $\bar{f}(x):=f(x+1)$ is irreducible. Notice that

$$
\bar{f}(x)=\frac{(x+1)^{p}-1}{x}
$$

Use Eisenstein's criterion and show that $\bar{f}(x)$ is irreducible in $\mathbb{Q}[x]$.
(b) Notice that $\mathbb{Q}[y]$ is a UFD and $\langle y-1\rangle$ is a maximal ideal of $\mathbb{Q}[y]$. Argue that if $g(x, y)$ is not irreducible in $(\mathbb{Q}[y])[x]$, then there are monic polynomials $g_{1}, g_{2} \in(\mathbb{Q}[y])[x]$ that are of x-degree less than $p-1$ and $g=g_{1} g_{2}$. Look at both side modulo $\langle y-1\rangle$; this is the same as saying that you are evaluating both sides at $y=1$. Argue why you get a contradiction.
(c) Multiply by p !, and use a criterion.
(d) y is irreducible in $F[y]$ and $F[y]$ is a UFD.
(e) $y^{2}-2$ is square-free in $F[y]$ and $F[y]$ is a UFD.
(f) Think about irreducible factors of the coefficients and Eisenstein's criterion. Notice that $\mathbb{Z}[i]$ is a UFD.
(g) Suppose the contrary. Argue that there exist $r_{1}, r_{2} \in \mathbb{Z}[x]$ of positive degree such that $r(x)=r_{1}(x) r_{2}(x)$. Consider $r(j)$ for integer j in $[1, n]$, and think about $r_{1}(x)^{2}-1$ and $r_{2}(x)^{2}-1$.)
2. Suppose p is a prime in $\mathbb{Z}, a \in \mathbb{Z}$, and $p \nmid a$. Prove that $x^{p^{n}}-x+a$ does not have a zero in \mathbb{Q}.
(Hint. Use the rational root criterion and Fermat'a little theorem.)
3. Suppose D is an integral domain. Prove that D is a PID if and only if D is a UFD and $\langle a, b\rangle=\langle\operatorname{gcd}(a, b)\rangle$ for all $a, b \in D \backslash\{0\}$.
(Hint. $\quad(\Leftarrow)$ Prove that every finitely generated ideal of D is principal. Argue that for every non-zero non-unit element a of D

$$
\{\langle d\rangle|d| a\}
$$

is finite.)

