1 Homework 3.

- 1. Prove that the following polynomials are irreducible.
 - (a) $f(x) := x^{p-1} + x^{p-2} + \dots + 1$ where p is a prime number.
 - (b) $g(x,y) := x^{p-1} + q_2(y)x^{p-2} + \cdots + q_{p-1}(y)$ in $\mathbb{Q}[x,y]$ where p is prime and $q_i(y)$'s are in $\mathbb{Q}[y]$ such that $q_i(1) = 1$ for all i.
 - (c) $h(x) := 1 + \frac{x}{1!} + \dots + \frac{x^p}{p!}$ in $\mathbb{Q}[x]$ where p is prime.
 - (d) $k(x,y) := x^n y$ in F[x,y] where F is a field.
 - (e) $p(x,y) := x^2 + y^2 2$ in F[x,y] where F is a field and its characteristic is not 2.
 - (f) $q(x) := x^4 + 12x^3 9x + 6$ in $\mathbb{Q}[i][x]$.
 - (g) Suppose n is a positive odd integer. Prove that

$$r(x) := (x-1)(x-2)\cdots(x-n) + 1$$

is irreducible in $\mathbb{Q}[x]$.

(**Hint**. (a) Argue that f(x) is irreducible precisely when $\overline{f}(x) := f(x+1)$ is irreducible. Notice that

$$\overline{f}(x) = \frac{(x+1)^p - 1}{x}.$$

Use Eisenstein's criterion and show that f(x) is irreducible in $\mathbb{Q}[x]$.

(b) Notice that $\mathbb{Q}[y]$ is a UFD and $\langle y - 1 \rangle$ is a maximal ideal of $\mathbb{Q}[y]$. Argue that if g(x, y) is not irreducible in $(\mathbb{Q}[y])[x]$, then there are monic polynomials $g_1, g_2 \in (\mathbb{Q}[y])[x]$ that are of x-degree less than p - 1 and $g = g_1g_2$. Look at both side modulo $\langle y - 1 \rangle$; this is the same as saying that you are evaluating both sides at y = 1. Argue why you get a contradiction. (c) Multiply by p!, and use a criterion.

- (d) y is irreducible in F[y] and F[y] is a UFD.

(e) $y^2 - 2$ is square-free in F[y] and F[y] is a UFD.

(f) Think about irreducible factors of the coefficients and Eisenstein's criterion. Notice that $\mathbb{Z}[i]$ is a UFD.

(g) Suppose the contrary. Argue that there exist $r_1, r_2 \in \mathbb{Z}[x]$ of positive degree such that $r(x) = r_1(x)r_2(x)$. Consider r(j) for integer j in [1, n], and think about $r_1(x)^2 - 1$ and $r_2(x)^2 - 1$.)

2. Suppose p is a prime in \mathbb{Z} , $a \in \mathbb{Z}$, and $p \nmid a$. Prove that $x^{p^n} - x + a$ does not have a zero in \mathbb{Q} .

(Hint. Use the rational root criterion and Fermat'a little theorem.)

3. Suppose D is an integral domain. Prove that D is a PID if and only if D is a UFD and $\langle a, b \rangle = \langle \gcd(a, b) \rangle$ for all $a, b \in D \setminus \{0\}$.

(**Hint**. (\Leftarrow) Prove that every finitely generated ideal of D is principal. Argue that for every non-zero non-unit element a of D

 $\{\langle d \rangle \mid d | a\}$

is finite.)