1 Homework 2.

1. Let A be a subring of $\mathbb{Q}[x,y]$ which is generated by x, xy, xy^2, \ldots ; that means

$$A := \mathbb{Q}[x, xy, xy^2, \ldots].$$

Prove that A is not Noetherian.

(Hint. Consider the chain of ideals

$$\langle x \rangle \subseteq \langle x, xy \rangle \subseteq \langle x, xy, xy^2 \rangle \subseteq \cdots$$

- 2. Let D be a UFD.
 - (a) (Rational root criterion) Suppose $a_i \in D$ and $\frac{r}{s}$ is a zero of

$$a_n x^n + a_{n-1} x^{n-1} + \dots + a_0,$$

where $r, s \in D$ and r and s do not have a common irreducible factor. Prove that $s|a_n$ and $r|a_0$.

- (b) (Integrally closed) Prove that a fraction $\frac{r}{s}$ is a zero of a monic polynomial in D[x] if and only if it belongs to D.
- (c) Prove that $\mathbb{Z}[2\sqrt{2}]$ is not a UFD.

(**Hint.** Show that $a_n r^n + a_{n-1} r^{n-1} s + \cdots + a_1 r s^{n-1} + a_0 s^n = 0$. Deduce that

$$r|a_0s^n$$
 and $s|a_nr^n$.

Use factorization into irreducibles and the assumption that r and s do not have a common irreducible factor, and obtain that $r|a_0$ and $s|a_n$. For the last part, notice that $\sqrt{2} = \frac{2\sqrt{2}}{2}$ is a zero of the monic polynomial $x^2 - 2$, but it is not in $\mathbb{Z}[2\sqrt{2}]$.)

3. Let $A := \mathbb{Z} + x\mathbb{Q}[x]$; this means

$$A = \{a_0 + a_1 x + \dots + a_n x^n \mid a_0 \in \mathbb{Z}, a_1, \dots, a_n \in \mathbb{Q}, n \in \mathbb{Z}^+\}.$$

(a) Prove that $f(x) \in A$ is irreducible if and only if either $f(x) = \pm p$ where p is a prime integer or $f(x) \in \mathbb{Q}[x]$ is irreducible and $f(0) = \pm 1$.

- (b) Prove that x cannot be written as a product of irreducibles in A.
- (c) Prove that A is not either a UFD or Noetherian.
- 4. Suppose A is a unital commutative ring.
 - (a) Let $\Sigma := \{ \mathfrak{a} \leq A \mid \mathfrak{a} \text{ is not finitely generated} \}$. Suppose Σ is not empty. Prove that Σ has a maximal element.
 - (b) Suppose \mathfrak{p} is a maximal element of Σ . Prove that \mathfrak{p} is a prime ideal.
 - (c) (Cohen) Suppose all the prime ideals of A are finitely generated. Prove that A is Noetherian.

(**Hint.** For the first part use Zorn's lemma. Suppose \mathfrak{p} is a maximal element of Σ and it is not a prime ideal. Argue why \mathfrak{p} is a proper ideal, and deduce that there exist $a, b \in A$ such that $a, b \notin \mathfrak{p}$ and $ab \in \mathfrak{p}$. Deduce that $\mathfrak{p} + \langle a \rangle$ is a finitely generated ideal; say

$$\mathfrak{p} + \langle a \rangle = \langle p_1 + r_1 a, \dots, p_n + r_n a \rangle$$

for some $p_i \in \mathfrak{p}$ and $r_i \in A$. Let

$$(\langle a \rangle : \mathfrak{p}) := \{ x \in A \mid xa \in \mathfrak{p} \}.$$

Notice that this is an ideal and it properly contains \mathfrak{p} . Deduce that

$$(\langle a \rangle : \mathfrak{p})$$

is a finitely generated ideal; say

$$(\langle a \rangle : \mathfrak{p}) = \langle s_1, \dots, s_m \rangle$$

for some $s_i \in A$. Prove that

$$\mathfrak{p} = \langle p_1, \dots, p_n, s_1 a, \dots, s_m a \rangle.$$

To this end, first show that the RHS is a subset of the LHS. Next take $x \in \mathfrak{p}$. Argue that there exist a_1, \ldots, a_n such that

$$x = a_1(p_1 + r_1a) + \dots + a_n(p_n + r_na).$$

Deduce that $\sum_{i=1}^{n} a_i r_i \in (\langle a \rangle : \mathfrak{p})$. Complete the proof.)

5. Suppose $f(x) \in (\mathbb{Z}/n\mathbb{Z})[x]$ is a monic polynomial of degree d. Prove that

$$|(\mathbb{Z}/n\mathbb{Z})[x]/\langle f(x)\rangle| = n^d.$$

(**Hint.** Use long division to show that for every $g(x) \in (\mathbb{Z}/n\mathbb{Z})[x]$ there exists a unique polynomial $r(x) \in (\mathbb{Z}/n\mathbb{Z})[x]$ of degree at most d-1 such that

$$g(x) + \langle f(x) \rangle = r(x) + \langle f(x) \rangle.$$

- 6. Suppose $p \in \mathbb{Z}$ is prime. Prove that the following statements are equivalent.
 - (a) p is not irreducible in $\mathbb{Z}[i]$.
 - (b) There exist $a, b \in \mathbb{Z}$ such that $p = a^2 + b^2$.
 - (c) $x^2 \equiv -1 \pmod{p}$ has a solution.

(**Hint.** Suppose $p = z_1 z_2$ and z_i 's are not unit. Deduce that $|z_i|^2 = p$. Suppose $p = a^2 + b^2$, look at both sides modulo p, argue why b is invertible in $\mathbb{Z}/p\mathbb{Z}$, and deduce that $x^2 + 1$ has a zero in $\mathbb{Z}/p\mathbb{Z}$. Suppose $p|x_0^2 + 1$. Deduce that $p|(x_0 + i)(x_0 - i)$, and obtain that p is not prime. Use the fact that $\mathbb{Z}[i]$ is a PID.)

- 7. Suppose $p \in \mathbb{Z}$ is prime. Prove that the following statements are equivalent.
 - (a) p is not irreducible in $\mathbb{Z}[\omega]$ where $\omega := \frac{-1+i\sqrt{3}}{2}$.
 - (b) There exist $a, b \in \mathbb{Z}$ such that $p = a^2 ab + b^2$.
 - (c) $x^2 x + 1 \equiv 0 \pmod{p}$ has a solution.

(**Hint.** The same line of argument as in the previous problem.)