1 Homework 1.

1. Suppose A is a unital commutative ring. Prove that

$$
A[x]^{\times}=\left\{a_{0}+a_{1} x+\cdots+a_{n} x^{n} \mid a_{0} \in A^{\times}, a_{1}, \ldots, a_{n} \in \operatorname{Nil}(A), n \in \mathbb{Z}^{+}\right\} .
$$

2. For every ring A, prove that

$$
A[x] /\left\langle x^{2}-2\right\rangle \simeq\left\{\left.\left(\begin{array}{cc}
a & b \\
2 b & a
\end{array}\right) \right\rvert\, a, b \in A\right\} .
$$

(Hint. Send $f(x) \in A[x]$ to $f\left(\begin{array}{ll}0 & 1 \\ 2 & 0\end{array}\right)$ and show that the kernel is $\left\langle x^{2}-2\right\rangle$. Here is an alternative approach: for every $f(x) \in A[x]$, by long division, there exists unique $a, b \in A$ and $q(x) \in A[x]$ such that $f(x)=\left(x^{2}-2\right) q(x)+$ $a+b x$. Deduce that $f(x)+\left\langle x^{2}-2\right\rangle=(a+b x)+\left\langle x^{2}-2\right\rangle$ for a unique pair of elements $a, b \in A$. Send $a+b x+\left\langle x^{2}-2\right\rangle$ to $\left(\begin{array}{cc}a & b \\ 2 b & a\end{array}\right)$.)
3. Let $\omega:=\frac{-1+i \sqrt{3}}{2}$ and

$$
\mathbb{Z}[\omega]:=\{a+b \omega \mid a, b \in \mathbb{Z}\} .
$$

Convince yourself that $\mathbb{Z}[\omega]$ is a subring of \mathbb{C}.
(a) Let $N(z):=|z|^{2}$ and check that

$$
N(a+b w)=a^{2}-a b+b^{2}
$$

for every $a, b \in \mathbb{R}$.
(b) Prove that for every $z_{1} \in \mathbb{Z}[\omega]$ and $z_{2} \in \mathbb{Z}[\omega] \backslash\{0\}$ there are $q, r \in \mathbb{Z}[\omega]$ such that

$$
z_{1}=z_{2} q+r \quad \text { and } \quad N(r)<N\left(z_{2}\right) .
$$

(c) Prove that $\mathbb{Z}[\omega]$ is a Euclidean domain and so it is a PID.
(d) Prove that $\mathbb{Z}[\omega]^{\times}=\left\{ \pm 1, \pm \omega, \pm \omega^{2}\right\}$.
4. Let n be a square-free integer more than 3 . Let

$$
\mathbb{Z}[\sqrt{-n}]:=\{a+b \sqrt{-n} \mid a, b \in \mathbb{Z}\} .
$$

(a) Prove that $2, \sqrt{-n}, 1 \pm \sqrt{-n}$ are all irreducible in $\mathbb{Z}[\sqrt{-n}]$.
(b) Find an element of $\mathbb{Z}[\sqrt{-n}]$ which is irreducible but not prime.
(c) Show that $\mathbb{Z}[\sqrt{-n}]$ is not a UFD.
(Hint. Use $N(z):=|z|^{2}$. Notice that 2 is either a divisor of n or $n+1$. Deduce that 2 is not prime.)
5. Suppose A is a unital commutative ring and \mathfrak{a} is an ideal of A. Let

$$
\sqrt{\mathfrak{a}}:=\left\{a \in A \mid \exists n \in \mathbb{Z}^{+}, a^{n} \in \mathfrak{a}\right\} .
$$

(a) Prove that $\sqrt{\mathfrak{a}}$ is an ideal of A and $\operatorname{Nil}(A / \mathfrak{a})=\sqrt{\mathfrak{a}} / \mathfrak{a}$.
(b) Let $V(\mathfrak{a})$ be the set of prime divisors of \mathfrak{a}; that means

$$
V(\mathfrak{a}):=\{\mathfrak{p} \in \operatorname{Spec}(A) \mid \mathfrak{a} \subseteq \mathfrak{p}\}
$$

Prove that $\sqrt{\mathfrak{a}}=\bigcap_{\mathfrak{p} \in V(\mathfrak{a})} \mathfrak{p}$.
6. A Bezout domain is an integral domain D in which for all $a, b \in D$, there exists $c \in D$ such that

$$
\langle a, b\rangle=\langle c\rangle .
$$

(a) Prove that an integral domain D is a Bezout domain if and only if for all $a, b \in D \backslash\{0\}$ there exists $d \in D$ such that
i. $d \mid a$ and $d \mid b$, and
ii. $d \in\langle a, b\rangle$.
(Notice that if d satisfies the above properties and d^{\prime} is another common divisor of a and b, then $d^{\prime} \mid d$. So we refer to such a d as a greatest common divisor of a and b.)
(b) Prove that every finitely generated ideal of a Bezout domain is principal.
(c) Prove that D is a PID if and only if it is both a UFD and a Bezout domain. (Hint. In class, we show that every PID is UFD. For the converse, suppose \mathfrak{a} is a non-zero proper ideal. Let $a \in \mathfrak{a}$ be an element with smallest number of irreducible factors. Show that for every $b \in \mathfrak{a}$, $\langle a, b\rangle=\langle a\rangle$. .

