1 Homework 9.

- 1. Suppose E/F is a field extension, $\alpha \in E$, and $[F[\alpha] : F]$ is odd. Prove that $F[\alpha^2] = F[\alpha]$.
- 2. Suppose a_1, \ldots, a_n are positive rational numbers. Prove that $\sqrt[3]{2}$ is not in $\mathbb{Q}[\sqrt{a_1}, \ldots, \sqrt{a_n}].$
- 3. Suppose $E \subseteq \mathbb{C}$ is a splitting field of $x^p 2$ over \mathbb{Q} where p is an odd prime number.
 - (a) Prove that $E = \mathbb{Q}[\sqrt[p]{2}, \zeta_p]$ where $\zeta_p := e^{2\pi i/p}$.
 - (b) Prove that $[E : \mathbb{Q}] = p(p-1)$.

.(**Hint.** Notice that $[E : \mathbb{Q}]$ is a multiple of $[\mathbb{Q}[\zeta_p] : \mathbb{Q}]$ and $[\mathbb{Q}[\sqrt[p]{2}] : \mathbb{Q}]$. Argue that $[\mathbb{Q}[\zeta_p] : \mathbb{Q}] = p - 1$ and $[\mathbb{Q}[\sqrt[p]{2}] : \mathbb{Q}] = p$.)

- 4. Suppose E is a splitting field of $f(x) \in F[x]$ over F.
 - (a) Prove that if $gcd(f, f') \neq 1$, then $E \otimes_F F[x]/\langle f \rangle$ has a non-zero nilpotent element.
 - (b) Prove that if gcd(f, f') = 1, then

$$E \otimes_F (F[x]/\langle f \rangle) \simeq \underbrace{E \oplus \cdots \oplus E}_{\text{deg }f\text{-times}}.$$

5. Suppose p is an odd prime, and $a \in \mathbb{F}_p^{\times}$. Prove that $x^p - x + a$ is irreducible in $\mathbb{F}_p[x]$.

(**Hint.** Let *E* be a splitting field of $x^p - x + a$ over \mathbb{F}_p . Let $\alpha \in E$ be a zero of $x^p - x + a$. Prove that $\alpha + i$ is a zero of $x^p - x + a$ for every $i \in \mathbb{F}_p$, and deduce that

$$x^p - x + a = \prod_{i \in \mathbb{F}_p} (x - \alpha - i).$$

Notice that $m_{\alpha,\mathbb{F}_p}(x)$ divides $x^p - x + a$, and consider the coefficient of x^{d-1} in $m_{\alpha,\mathbb{F}_p}(x)$ and show that deg $m_{\alpha,\mathbb{F}_p} = p$.)

6. Suppose K/F is a field extension, and K_1 and K_2 are two intermediate subfields; that means $F \subseteq K_i \subseteq K$. Let K_1K_2 be the subfield of K which is generated by $K_1 \cup K_2$. We say K_1K_2 is a composite of K_1 and K_2 . Suppose $[K_i : F] < \infty$ for i = 1, 2.

(a) Prove that

$$K_1 K_2 = \{ \sum_{i=1}^m a_i b_i \mid m \in \mathbb{Z}^+, a_i \in K_1, b_i \in K_2 \}$$

(b) Prove that there exists a surjective *F*-algebra homomorphism

$$m: K_1 \otimes_F K_2 \to K_1 K_2$$

such that $m(x \otimes y) = xy$.

- (c) In the setting of the previous part, prove that the following statements are equivalent
 - i. $K_1 \otimes_F K_2$ is a field.
 - ii. ϕ is an isomorphism.
 - iii. $[K_1K_2:F] = [K_1:F][K_2:F].$
- (d) Prove that $\mathbb{Q}[\sqrt{2}] \otimes_{\mathbb{Q}} \mathbb{Q}[\sqrt{3}] \simeq \mathbb{Q}[\sqrt{2},\sqrt{3}].$
- 7. Let's recall that \mathbb{F}_q denotes a finite field of order q and for every prime power q there exists a unique field of order q, up to an isomorphism.
 - (a) Prove that $\mathbb{F}_{p^m} \subseteq \mathbb{F}_{p^n}$ if and only if m|n.
 - (b) Let $f(x) \in \mathbb{F}_p[x]$ be a monic irreducible polynomial of degree d. Prove that $f(x)|x^{p^d} x$.
 - (c) Suppose $f(x) \in \mathbb{F}_p[x]$ is irreducible and $f(x)|x^{p^n} x$. Prove that $\deg f|n$.
 - (d) Let P_d be the set of all irreducible monic polynomials of degree d in $\mathbb{F}_p[x]$. Prove that

$$\prod_{d|n} \prod_{f \in P_d} f(x) = x^{p^n} - x.$$

(e) Show that $\sum_{d|n} d|P_d| = p^n$.

(**Hint**. Notice that if $\mathbb{F}_{p^m} \subseteq \mathbb{F}_{p^n}$, then by the tower formula, $n = [\mathbb{F}_{p^n} : \mathbb{F}_p] = [\mathbb{F}_{p^n} : \mathbb{F}_{p^m}][\mathbb{F}_{p^m} : \mathbb{F}_p]$. To show the converse, you can use the result

that we proved last quarter: \mathbb{F}_{p^k} is the splitting field of $x^{p^k} - x$ over \mathbb{F}_p , and it consists of all the zeros of this polynomial. Argue that if m|n, then $x^{p^m} - x$ divides $x^{p^n} - x$.

For the second part, suppose $E = F[\alpha]$ is an extension of F and $f(\alpha) = 0$. Argue why $m_{\alpha,F} = f$. Deduce that $F[\alpha] \simeq \mathbb{F}_{p^d}$, and so α is a zero of $x^{p^d} - x$.

For the third part, notice that \mathbb{F}_{p^n} contains a zero α of f. Notice that $[\mathbb{F}_p[\alpha] : \mathbb{F}_p] = \deg f$ and use the first part.

To show the forth part, use the second and the third parts, and argue why $x^{p^n} - x$ does not have multiple roots.

To show the last part, compare the degrees of polynomials given in the equation of the forth part.)

(Using the Möbius inversion, one can deduce that

$$|P_d| = \sum_{d|n} \mu(n/d) p^d,$$

and this can be used to show

$$\lim_{d \to \infty} \frac{|P_d|}{p^d/d} = 1,$$

which is the positive characteristic analogue of the prime number theorem. In fact, we can use this result and deduce

$$|P_d| = \frac{p^d}{d} + O(\frac{p^{d/2}}{d}),$$

which is an analogue of the Riemann Hypothesis.)

- 8. Prove that $\mathbb{Q}[\sqrt{2}]$ and $\mathbb{Q}[\sqrt{3}]$ are not isomorphic.
- 9. Suppose p is a prime and $\mathbb{F}_p(x, y)$ is a field of fractions of $\mathbb{F}_p[x, y]$.
 - (a) Prove that $[\mathbb{F}_p(x) : \mathbb{F}_p(x^p)] = p$ and $[\mathbb{F}_p(x, y) : \mathbb{F}_p(x^p, y^p)] = p^2$.
 - (b) Prove that $\phi : \mathbb{F}_p(x, y) \to \mathbb{F}_p(x^p, y^p), \phi(z) = z^p$ is an isomorphism.
 - (c) Prove that $\mathbb{F}_p(x,y)/\mathbb{F}_p(x^p,y^p)$ is not a simple extension; that means there is no $\frac{g}{h} \in \mathbb{F}_p(x,y)$ such that $\mathbb{F}_p(x,y) = \mathbb{F}_p(x^p,y^p)[\frac{g}{h}].$

10. Suppose $\alpha, \beta \in \mathbb{C}$ are algebraic over \mathbb{Q} . Let $f := m_{\alpha,\mathbb{Q}}$ and $g := m_{\beta,\mathbb{Q}}$. Prove that f is irreducible in $(\mathbb{Q}[\beta])[x]$ if and only if g is irreducible in $(\mathbb{Q}[\alpha])[x]$.

(Hint. Prove that both of these conditions are equivalent to

 $[\mathbb{Q}[\alpha,\beta]:\mathbb{Q}] = \deg f \deg g.)$

11. Given a set A of points, we say a line is 1-constructible with respect to A if it is passed through two points in A. We say a circle is 1-constructible with respect to A if its center is in A and its radius is the distance between two points in A. We say a point p is 1-contructible with respect to A if it is an intersection point of either two 1-constructible lines, or one 1-constructible line and one 1-constructible circle, or two 1-constructible circles. Let $A_0 :=$ $\{(0,0),(1,0)\}$. We say $p := (\alpha,\beta)$ is a constructible point if there exists a sequence of points $p_i := (\alpha_i, \beta_i)$ such that $p_0 \in A_0$, $p_n = p$, and p_{i+1} is 1-constructible with respect to

$$A_i := A_0 \cup \{p_1, \ldots, p_i\}.$$

(a) Let $F_i := \mathbb{Q}[\alpha_1, \beta_1, \dots, \alpha_i, \beta_i]$. Justify it for yourself that

 $[F_{i+1}:F_i] \in \{1,2,4\}.$

- (b) Prove that $[F_n : \mathbb{Q}]$ is a power of 2.
- (c) Prove that $\sqrt[3]{2}, \pi$ and $\cos(20^\circ)$ are not constructible.
- 12. Suppose F is a field, $f(x) \in F[x]$ is a monic irreducible polynomial in F[x]. Let E be a splitting field of f over F. Suppose

$$f(x) = (x - \alpha_1) \cdots (x - \alpha_n)$$

for some α_i 's in E. Let $\operatorname{Aut}(E/F)$ be the set of isomorphisms $\theta: E \to E$ such that $\theta(a) = a$ for all $a \in F$.

(a) Prove that for all $\theta \in \operatorname{Aut}(E/F)$ and i,

$$\theta(\alpha_i) \in \{\alpha_1, \ldots, \alpha_n\},\$$

and deduce that we get a permutation $\sigma(\theta)$ in the symmetric group of $\{\alpha_1, \ldots, \alpha_n\}.$

(b) Prove that

$$\sigma : \operatorname{Aut}(E/F) \to S_{\{\alpha_1,\dots,\alpha_n\}}, \quad \theta \mapsto \sigma(\theta)$$

is an injective group homomorphism.

(c) Prove that the action of $\operatorname{Aut}(E/F)$ on $\{\alpha_1, \ldots, \alpha_n\}$ is transitive.

(For this problem, you should only write the details for the last part. But you have to know why the other parts are correct.)