1 Homework 8.

1. Suppose A is a local unital commutative ring and \mathfrak{a} is an ideal of A.
(a) Suppose M is a flat A-module. Prove that $\mathfrak{a} \otimes_{A} M \simeq \mathfrak{a} M$.
(b) Suppose $0 \rightarrow M_{1} \xrightarrow{i} M_{2}$ is injective, and M_{1} and M_{2} are flat A modules. Prove that

$$
\mathrm{id}_{\mathfrak{a}} \otimes i: \mathfrak{a} \otimes_{A} M_{1} \rightarrow \mathfrak{a} \otimes_{A} M_{2}
$$

is injective.
(c) Suppose $0 \rightarrow N_{1} \xrightarrow{i} N_{2} \rightarrow N_{3} \rightarrow 0$ is a SES, and N_{2} and N_{3} are flat A-modules. Prove that

$$
\mathfrak{a} N_{2} \cap i\left(N_{1}\right)=i\left(\mathfrak{a} N_{1}\right) .
$$

(Hint. Use problem 4 in HW 7: deduce that N_{1} is a flat A-module.)
(d) Suppose $M:=F / K$ where F is a free A-module and K is a submodule of F. Suppose M is a flat A-module. Prove that

$$
\mathfrak{a} F \cap K=\mathfrak{a} K
$$

2. Suppose A is a local unital commutative ring and $\operatorname{Max}(A)=\{\mathfrak{m}\}$.
(a) Suppose K is a finitely generated submodule of A^{n} and $\mathfrak{m}^{n} \cap K=\mathfrak{m} K$. Prove that K is a free A-module and $A^{n}=K \oplus N$ for some finitely generated submodule N of A^{n}.
(b) Suppose M is a finitely presented A-module; that means, for some positive integer n, there is a finitely generated submodule K of A^{n} such that $M \simeq A^{n} / K$. Suppose M is a flat A-module. Prove that M is free.
(Hint. (a) Notice that $0 \rightarrow \frac{K}{\mathfrak{m} K} \rightarrow \frac{A^{n}}{\mathfrak{m}^{n}}$ is injective of (A / \mathfrak{m})-vector spaces. Hence there are $x_{1}, \ldots, x_{m} \in K$ and $x_{m+1}, \ldots, x_{n} \in A^{n}$ such that $\bar{x}_{i}:=$ $x_{i}+\mathfrak{m} K$, for $i=1 . . m$ is a (A / \mathfrak{m})-basis of $\frac{K}{\mathfrak{m} K}$ and $\bar{x}_{i}^{\prime}:=x_{i}+\mathfrak{m}^{n}$, for $i=1 . . n$ is a (A / \mathfrak{m})-basis of A^{n} / \mathfrak{m}^{n}. Use Nakayama's lemma and show that

$$
K=\bigoplus_{i=1}^{m} A x_{i} \quad \text { and } \quad A^{n}=\bigoplus_{i=1}^{n} A x_{i} .
$$

(b) Use Problem 1(d) and deduce that $\mathfrak{m}^{n} \cap K=\mathfrak{m} K$. Use part (a) and complete the proof.)
3. Suppose A is a unital commutative ring and M is a finitely presented flat A-module. Prove that for every $\mathfrak{p} \in \operatorname{Spec}(A), M_{\mathfrak{p}}$ is a free $A_{\mathfrak{p}}$-module. (Remark. This shows that every finitely presented flat module is locally free. Earlier you have seen that a finitely generated projective module is locally free. The converse of these statements are correct as well, and so for a finitely presented module we have

$$
\text { flat } \Longleftrightarrow \text { locally free } \Longleftrightarrow \text { projective.)) }
$$

4. Prove that $\mathbb{C} \otimes_{\mathbb{R}} \mathbb{C} \simeq \mathbb{C} \oplus \mathbb{C}$ as \mathbb{C}-algebras.
5. Let $A_{p}:=\mathbb{Z}[x] /\left\langle x^{2}+x+1\right\rangle \otimes_{\mathbb{Z}} \mathbb{Z}_{p}$.
(a) Prove that A_{p} is a field if and only if $p \not \equiv 1(\bmod 3)$ and $p \neq 3$.
(b) Prove that $A_{p} \simeq \mathbb{Z} / p \mathbb{Z} \oplus \mathbb{Z} / p \mathbb{Z}$ as rings if and only if $p \equiv 1(\bmod 3)$.
(c) Prove that A_{p} has a non-zero nilpotent element if and only if $p=3$.
