1 Homework 7.

- 1. Suppose A is a local unital commutative ring and K is a field.
 - (a) Suppose V and W are two K-vector spaces. Prove that

 $\dim_{K}(V \otimes_{K} W) = (\dim_{K} V)(\dim_{K} W)$

(Hint. Use problem 5.)

(b) Suppose M and N are finitely generated A-modules, and M⊗_AN = 0.
Prove that either M = 0 or N = 0.
(Hint. Suppose Max(A) = {m}. Let k := A/m. Argue

 $M/\mathfrak{m}M \simeq M \otimes_A k$ and $N/\mathfrak{m}N \simeq N \otimes_A k$.

Show that $(M/\mathfrak{m}M) \otimes_k (N/\mathfrak{m}N) = 0$. Use Nakayama's lemma.)

(**Remark**. Notice that $\mathbb{Z}/2\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}/3\mathbb{Z} = 0$ and so it is crucial that A is local. For an arbitrary ring A, we deduce that $M \otimes_A N = 0$ implies for any $\mathfrak{p} \in \operatorname{Spec} A$ either $M_{\mathfrak{p}} = 0$ or $N_{\mathfrak{p}} = 0$.)

- 2. Suppose A is a unital commutative ring, $S \subseteq A$ is a multiplicatively closed subset, and M is an A-module.
 - (a) Convince yourself that localizing defines an exact functor from <u>A-mod</u> to <u> $S^{-1}A$ -mod</u>. (You do not need to write any argument for this part.)
 - (b) Prove that $S^{-1}A \otimes_A M \simeq S^{-1}M$; deduce that $S^{-1}A$ is a flat A-module.
 - (c) Prove that, if M is a flat A-module, then $S^{-1}M$ is a flat $S^{-1}A$ -module.
 - (d) Prove that $\frac{x_1 \otimes x_2}{1} \mapsto \frac{x_1}{1} \otimes \frac{x_2}{1}$ gives us a well-defined $S^{-1}A$ -module isomorphism

$$S^{-1}(M_1 \otimes_A M_2) \xrightarrow{\sim} S^{-1}M_1 \otimes_{S^{-1}A} S^{-1}M_2.$$

(e) Prove that, if $M_{\mathfrak{p}}$ is a flat $A_{\mathfrak{p}}$ -module for every $\mathfrak{p} \in \operatorname{Spec}(A)$, then M is flat. (Hint: look at previous HWs on localizing a module.)

3. Suppose M_i 's and N are A-modules, M_3 is flat, and

$$0 \to M_1 \xrightarrow{f_1} M_2 \xrightarrow{f_2} M_3 \to 0$$

is a SES. Prove that

$$0 \to M_1 \otimes_A N \xrightarrow{f_1 \otimes \mathrm{id}_N} M_2 \otimes_A N \xrightarrow{f_2 \otimes \mathrm{id}_N} M_3 \otimes_A N \to 0$$

is a SES.

(Hint. Argue that there exists a SES

$$0 \to K \to F \to N \to 0$$

such that F is a free A-module. Discuss why the following is a commutating diagram where all the rows and columns are exact.

Suppose $x \in M_1 \otimes_A N$ is in the kernel of $f_1 \otimes id_N$. Then use the following diagram:

Start with red, deduce existence of green, get the violet part, continue with blue. Argue why y = y'; and deduce that x = 0.)

4. Suppose $0 \to M_1 \to M_2 \to M_3 \to 0$ is a SES of A-modules and M_3 is flat. Prove that M_1 is flat if and only if M_2 is flat.

(Hint. Use the previous problem and the Short Five Lemma.)