
1 Homework 5.

1. In this problem, you see the differences between a direct product and a

direct sum. Among other things, you see that an infinite direct product is

not necessarily a free module.

(a) Let ϕ ∈ Hom(
∏∞

i=1 Z,Z); let ej ∈
∏∞

i=1 Z be

ej(i) := 0 if i ̸= j and ei(i) = 1.

Suppose ϕ(ej) = nj ̸= 0 for every j. Choose a sequence of positive

integers 1 =: k1 < k2 < · · · such that

kj+1 ∤ kj!nj. (1)

Consider

Σ := {(ai)∞i=1| ai ∈ {0, ki!}}. (2)

(a-1) Argue why there exist two distinct elements (ai)
∞
i=1 and (a′i)

∞
i=1 of

Σ such that

ϕ((ai)
∞
i=1) = ϕ((a′i)

∞
i=1). (3)

(Hint. Notice that Σ is uncountble and Z is countable.)

(a-2) In the setting of the previous step, suppose i0 is the first index

where ai0 ̸= a′i0 . Show that

ϕ((ai0 − a′i0)ei0) ̸∈ ki0+1Z, (Hint. use (1))

and

ϕ((ai0 − a′i0)ei0) ∈ ki0+1Z; (Hint. use (2) and (3))

and get a contradiction.

(b) Use part (a) to deduce

Hom(
∏∞

i=1 Z,Z) →
∞⊕
i=1

Z,

ϕ 7→(ϕ(ei))
∞
i=1

is an isomorphism.
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(Hint. Suppose
⊕∞

i=1 Z ⊆ kerϕ; then show

pn|ϕ(pa1, p2a2, p3a3, . . .)

for every n and deduce that ϕ(pa1, p
2a2, p

3a3, . . .) = 0; observe that

every element (b1, b2, . . .) can be written as a sum of two elements of

the form (2a1, 2
2a2, . . .) and (3a1, 3

2a2, . . .).)

(c) Use part (b) to show
∏∞

i=1 Z is not a free abelian group.

(d) Use part (b) to show

Hom

(∏∞
i=1 Z⊕∞
i=1 Z

,Z
)

= 0.

2. Suppose A is an integral domain. Show that every submodule of a finitely

generated free A-module is a free A-module if and only if A is a PID.

3. Suppose (A,m) is a local unital commutative ring; that means Max(A) =

{m}.

(a) (Nakayama’s lemma) Suppose M is a finitely generated A-module.

Suppose M = mM where

mM =
{ n∑

i=1

aixi| ai ∈ m, xi ∈ M
}
.

Prove that M = 0.

(Hint. Let y1, . . . , yd be a generating set of M . By assumption, ∃aij ∈
m such that

yi =
d∑

j=1

aijyj.

Hence (I− [aij])


y1
...

yd

 = 0. Show that I− [aij] ∈ GLd(A); and deduce

yi = 0; and so M = 0.)

(b) Suppose M is a finitely generated A-module. Prove that

d(M) = dimA
m

(
M

mM

)
,
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where M
mM

is viewed as a vector space over A
m
.

(Hint. It is clear that d(M) ≥ dimA
m
( M
mM

); now suppose

y1 +mM, . . . , yd +mM

is an A
m
-basis of M

mM
, and letN be the submodule ofM that is generated

by yi’s. Use part (a) for M
N
.)

(c) (f.g. projective ⇒ locally free) Suppose P is a finitely generated pro-

jective A-module. Prove that P is free.

(Hint. Suppose d(P ) = d; so there is a S.E.S.

0 → N → Ad → P → 0.

Since P is projective, we have that there is an A-module isomorphism

ϕ : Ad ∼−→ P ⊕N . Show that ϕ(mAd) = mP ⊕mN ; and then use part

(b).)

(Remark. This exercise implies that for an arbitrary unital commuta-

tive ring A, a finitely generated projective module P is locally free; that

means for every p ∈ Spec(A), Mp is a free Ap-module. The converse of this

statement is true as well: a f.g. locally free module is projective.)

4. Suppose {fi}i∈I ⊆ Z[x1, . . . , xn] is a family of polynomials. For every unital

commutative ring A, let

F (A) := {(a1, . . . , an) ∈ An | ∀i ∈ I, fi(a1, . . . , an) = 0}.

(a) Prove that F defines a functor from the category of unital commutative

rings to the category of sets.

(b) Prove that there exists a natural isomorphism from F to a repre-

sentable functor.

(Hint. Let a := ⟨fi | i ∈ I⟩ and R0 := Z[x1, . . . , xn]/a. Show that the

following is a natural bijection between HomRng(R0, A) and F (A):

ϕ 7→ (ϕ(x1 + a), . . . , ϕ(xn + a)).

Notice that the inverse of this map is given by the evaluation maps; for

every a ∈ F (A), let

ϕa(f(x) + a) := f(a)
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and argue why this is well-defined. )

5. Suppose P and P ′ are projective A-modules, and

0 → K → P
f−→ M → 0

and

0 → K ′ → P ′ f ′
−→ M → 0

are short exact sequences of A-modules. Prove that

P ⊕K ′ ≃ P ′ ⊕K.

(Hint. Let L := {(x, x′) ∈ P ⊕ P ′| f(x) = f ′(x′)}. Show that L is a

submodule of P ⊕P ′. Notice that the following diagram is commuting and

each row and column is an exact sequence; and then use the assumption

that P and P ′ are projective to deduce L ≃ P ⊕K ′ and L ≃ P ′ ⊕K.)

0 0

kerπ′ K ′

0 kerπ L P ′ 0

0 K P M 0

0 0

∼

≀ π

π′

f ′

f
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