1 Homework 3.

1. Suppose D is a PID and M is a finitely generated D-module. Suppose

$$
M \simeq D^{r} \oplus \bigoplus_{i=1}^{m} D /\left\langle a_{i}\right\rangle,
$$

and a_{1}, \ldots, a_{m} are the invariant factors of M. Prove that $d(M)=r+m$.
(Remark. In class, we proved that $\operatorname{rank}(M)=r$.)
2. Suppose A is a unital commutative ring. A matrix $a \in \mathrm{M}_{n}(A)$ is called nilpotent if $a^{m}=0$ for some non-negative integer m. Suppose F is a field and $a \in \mathrm{M}_{n}(F)$ is a nilpotent matrix.
(a) Prove that the annihilator of V_{a} is of the form $\left\langle x^{m}\right\rangle$ for some $m \in \mathbb{Z}^{+}$.
(b) Prove that $V_{a} \simeq F[x] /\left\langle x^{m_{1}}\right\rangle \oplus \cdots \oplus F[x] /\left\langle x^{m_{k}}\right\rangle$ for some positive integers $m_{1} \leq \cdots \leq m_{k}$.
(c) In the above setting, prove that $n=m_{1}+\cdots+m_{k}$, and deduce that $a^{n}=0$.
(d) Prove that $\operatorname{dim}_{F} \operatorname{ker}\left(a^{\ell}\right)=\sum_{i=1}^{k} \min \left\{\ell, m_{i}\right\}$.
(e) Prove that two nilpotent matrices $a_{1}, a_{2} \in \mathrm{M}_{n}(a)$ are similar if and only if $\operatorname{dim}_{F} \operatorname{ker}\left(a_{1}^{\ell}\right)=\operatorname{dim}_{F} \operatorname{ker}\left(a_{2}^{\ell}\right)$ for every positive integer ℓ.
3. Suppose A is a unital commutative ring and $\operatorname{Nil}(A)=\{0\}$. Prove that $a \in \mathrm{M}_{n}(A)$ is nilpotent if and only if $a^{n}=0$.
(Hint. Use the previous problem, part (c), to show the claim for fields. Using field of fractions, obtain a similar result for integral domains. Then for every $\mathfrak{p} \in \operatorname{Spec}(A)$, consider a modulo \mathfrak{p} in $\mathrm{M}_{n}(A / \mathfrak{p})$.)
4. Let D be a PID, and F be a field of fractions of D. Suppose $a \in \mathrm{M}_{n, m}(D)$, and r is the rank of a as an element of $\mathrm{M}_{n, m}(F)$. Let

$$
\begin{aligned}
& \underline{\operatorname{ker} a}(F):=\left\{v \in F^{m} \mid a v=0\right\}, \quad \underline{\operatorname{ker} a}(D):=\underline{\operatorname{ker} a}(F) \cap D^{m}, \quad \text { and, } \\
& \underline{\operatorname{Im} a}(F):=\left\{a v \in F^{n} \mid v \in F^{m}\right\}, \quad \underline{\operatorname{Im} a}(D):=\left\{a v \in D^{n} \mid v \in D^{m}\right\} .
\end{aligned}
$$

(a) Prove that $D^{m} / \underline{\operatorname{ker} a}(D)$ is a free D-module; and deduce that there exist $x_{1}, \ldots, x_{m} \in D^{m}$ such that

$$
\begin{aligned}
& D^{m}=D x_{1} \oplus \cdots \oplus D x_{m}, \quad \text { and } \\
& \underline{\operatorname{ker} a}(D)=D x_{r+1} \oplus \cdots \oplus D x_{m} .
\end{aligned}
$$

(b) Prove that there exist $y_{1}, \ldots, y_{n} \in D^{n}$ and $d_{1}, \ldots, d_{r} \in D \backslash\{0\}$ such that

$$
\begin{gathered}
D^{n}=D y_{1} \oplus \cdots \oplus D y_{n}, \\
d_{1}|\cdots| d_{r}, \quad \text { and } \\
\underline{\operatorname{Im} a}(D)=D d_{1} y_{1} \oplus \cdots \oplus D d_{r} y_{r} .
\end{gathered}
$$

(c) Let x_{i} 's be as in part (a). Prove that there exist $x_{1}^{\prime}, \ldots, x_{r}^{\prime} \in \bigoplus_{i=1}^{r} D x_{i}$ such that

$$
\begin{gathered}
\bigoplus_{i=1}^{r} D x_{i}=D x_{1}^{\prime} \oplus \cdots \oplus D x_{r}^{\prime}, \quad \text { and } \\
a x_{i}^{\prime}=d_{i} y_{i}
\end{gathered}
$$

for all i.
(d) Prove that

$$
\begin{gathered}
\gamma_{1}:=\left[x_{1}^{\prime} \cdots x_{r}^{\prime} x_{r+1} \cdots x_{m}\right] \in \mathrm{GL}_{m}(D), \\
\gamma_{2}:=\left[y_{1} \cdots y_{n}\right] \in \operatorname{GL}_{n}(D), \\
a \gamma_{1}=\gamma_{2}\left(\begin{array}{cc}
\operatorname{diag}\left(d_{1}, \ldots, d_{r}\right) & 0 \\
0 & 0
\end{array}\right) .
\end{gathered}
$$

Hence

$$
a=\gamma_{2}\left(\begin{array}{cc}
\operatorname{diag}\left(d_{1}, \ldots, d_{r}\right) & 0 \\
0 & 0
\end{array}\right) \gamma_{1}^{-1}
$$

(Remark. This is called a Smith form of A.)
5. Let $a \in \mathrm{M}_{n}(\mathbb{Z})$, and $M_{a}:=\mathbb{Z}^{n} / \underline{\operatorname{Im} a}(\mathbb{Z})$.
(a) Prove that M_{a} is finite if and only if $\operatorname{det} a \neq 0$.
(b) Suppose $\operatorname{det} a \neq 0$. Prove that $\left|M_{a}\right|=|\operatorname{det} a|$.
(Hint. Suppose $a=\lambda_{1}\left(\begin{array}{cc}\operatorname{diag}\left(d_{1}, \ldots, d_{r}\right) & 0 \\ 0 & 0\end{array}\right) \lambda_{2}$ for some $\lambda_{1}, \lambda_{2} \in \operatorname{GL}_{n}(\mathbb{Z})$
(a Smith form of a). Prove that

$$
\left.M_{a} \simeq \mathbb{Z}^{n-r} \oplus \bigoplus_{i=1}^{r} \mathbb{Z} / d_{i} \mathbb{Z} .\right)
$$

6. Suppose F is a field, $a \in \mathrm{M}_{n}(F[x])$, and $\operatorname{det} a \neq 0$. Prove that

$$
\left.\operatorname{dim}_{F}\left(F[x]^{n} / \underline{\operatorname{Im} a}(F[x])\right)=\operatorname{deg}(\operatorname{det} a)\right)
$$

(Hint. Suppose for some $\lambda_{1}, \lambda_{2} \in \mathrm{GL}_{n}(F[x])$

$$
a=\lambda_{1}\left(\begin{array}{cc}
\operatorname{diag}\left(d_{1}, \ldots, d_{r}\right) & 0 \\
0 & 0
\end{array}\right) \lambda_{2}
$$

(a Smith form of a). Show that $n=r$, and

$$
\left.F[x]^{n} / \underline{\operatorname{mm} a}(F[x]) \simeq \bigoplus_{i=1}^{r} F[x] /\left\langle d_{i}(x)\right\rangle .\right)
$$

7. Let F be a field and $a \in \mathrm{M}_{n}(F)$. Suppose

$$
x I-a=\gamma_{1} \operatorname{diag}\left(f_{1}(x), \ldots, f_{n}(x)\right) \gamma_{2}
$$

is a Smith form of $x I-a \in \mathrm{M}_{n}(F[x])$; that means $\gamma_{1}, \gamma_{2} \in \mathrm{GL}_{n}(F[x])$ and $f_{1}(x)|\cdots| f_{n}(x)$. Suppose m is the largest integer such that $\operatorname{deg} f_{m-1}=0$. Prove that $\operatorname{diag}\left(c\left(f_{m}\right), \ldots, c\left(f_{n}\right)\right)$ is the rational canonical form of a.
(Hint. By the hint of the previous problem

$$
F[x] / \underline{\operatorname{Im}(x I-a)}(F[x]) \simeq \bigoplus_{i=1}^{n} F[x] /\left\langle f_{i}(x)\right\rangle \simeq V_{\operatorname{diag}\left(c\left(f_{m}\right), \ldots, c\left(f_{n}\right)\right)},
$$

as $F[x]$-modules. Deduce that it is enough to prove

$$
\begin{equation*}
F[x] / \underline{\operatorname{Im}(x I-a)}(F[x]) \simeq V_{a} \tag{1}
\end{equation*}
$$

as $F[x]$-modules. Let

$$
\phi: F[x]^{n} \rightarrow V_{a}, \quad \phi\left(\sum_{i=0}^{m} x^{i} v_{i}\right):=\sum_{i=0}^{m} a^{i} v_{i} .
$$

Argue why ϕ is an $F[x]$-module homomorphism. It is easy to see that $\underline{\operatorname{Im}(x I-a)}(F[x]) \subseteq$ ker ϕ. Prove that equality holds, and deduce that (1) holds.)

