1 Homework 4.

1. Prove that the following polynomials are irreducible.
(a) $f(x):=x^{p-1}+x^{p-2}+\cdots+1$ where p is a prime number.
(b) $g(x, y):=x^{p-1}+q_{2}(y) x^{p-2}+\cdots+q_{p-1}(y)$ in $\mathbb{Q}[x, y]$ where p is prime and $q_{i}(y)$'s are in $\mathbb{Q}[y]$ such that $q_{i}(1)=1$ for all i.
(c) $k(x, y):=x^{n}-y$ in $F[x, y]$ where F is a field.
(d) $p(x, y):=x^{2}+y^{2}-2$ in $F[x, y]$ where F is a field and its characteristic is not 2 .
(e) $q(x):=x^{4}+12 x^{3}-9 x+6$ in $\mathbb{Q}[i][x]$.
(f) Suppose n is a positive odd integer. Prove that

$$
r(x):=(x-1)(x-2) \cdots(x-n)+1
$$

is irreducible in $\mathbb{Q}[x]$.
(Hint. (a) Argue that $f(x)$ is irreducible precisely when $\bar{f}(x):=f(x+1)$ is irreducible. Notice that

$$
\bar{f}(x)=\frac{(x+1)^{p}-1}{x}
$$

Use Eisenstein's criterion and show that $\bar{f}(x)$ is irreducible in $\mathbb{Q}[x]$.
(b) Notice that $\mathbb{Q}[y]$ is a UFD and $\langle y-1\rangle$ is a maximal ideal of $\mathbb{Q}[y]$. Argue that if $g(x, y)$ is not irreducible in $(\mathbb{Q}[y])[x]$, then there are monic polynomials $g_{1}, g_{2} \in(\mathbb{Q}[y])[x]$ that are of x-degree less than $p-1$ and $g=g_{1} g_{2}$. Look at both side modulo $\langle y-1\rangle$; this is the same as saying that you are evaluating both sides at $y=1$. Argue why you get a contradiction.
(c) Multiply by p !, and use a criterion.
(d) y is irreducible in $F[y]$ and $F[y]$ is a UFD.
(e) $y^{2}-2$ is square-free in $F[y]$ and $F[y]$ is a UFD.
(f) Think about irreducible factors of the coefficients and Eisenstein's criterion. Notice that $\mathbb{Z}[i]$ is a UFD.
(g) Suppose the contrary. Argue that there exist $r_{1}, r_{2} \in \mathbb{Z}[x]$ of positive degree such that $r(x)=r_{1}(x) r_{2}(x)$. Consider $r(j)$ for integer j in $[1, n]$, and think about $r_{1}(x)^{2}-1$ and $r_{2}(x)^{2}-1$.)
2. Suppose p is a prime in $\mathbb{Z}, a \in \mathbb{Z}$, and $p \nmid a$. Prove that $x^{p^{n}}-x+a$ does not have a zero in \mathbb{Q}.
(Hint. Use the rational root criterion and Fermat'a little theorem.)
3. In this problem, you will need basic properties of the determinant function that I summarize here. For $\left[a_{i j}\right] \in \mathrm{M}_{n}(A)$, let

$$
\operatorname{det}\left[a_{i j}\right]:=\sum_{\sigma \in S_{n}} \operatorname{sgn}(\sigma) \prod_{i=1}^{n} a_{i \sigma(i)}
$$

where S_{n} is the symmetric group and sgn : $S_{n} \rightarrow\{ \pm 1\}$ is the sign function. The (ℓ, k)-minor of $x:=\left[a_{i j}\right]$ is the determinant of the $(n-1)$-by- $(n-1)$ matrix $x(\ell, k)$ obtained after removing the ℓ-th row and the k-th column of x. Let

$$
\operatorname{adj}(x):=\left[(-1)^{i+j} \operatorname{det} x(j, i)\right] \in \mathrm{M}_{n}(A) ;
$$

this is called the adjugate of A. Here are the main properties of det and adj.
(a) det is multi-linear with respect to the columns and rows.
(b) $\operatorname{det}(I)=1$.
(c) If x has two identical columns or rows, then $\operatorname{det} x=0$.
(d) For all $x, y \in \mathrm{M}_{n}(A)$, $\operatorname{det}(x y)=\operatorname{det}(x) \operatorname{det}(y)$.
(e) $\operatorname{adj}(x) x=x \operatorname{adj}(x)=\operatorname{det}(x) I$.

For every A-module homomorphism $\phi: A^{n} \rightarrow A^{n}$, similar to linear maps, we can associate a matrix $x_{\phi} \in \mathrm{M}_{n}(A)$; the i-th column of x_{ϕ} is given by the vector $\phi\left(e_{i}\right)$, where e_{i} has 1 at the i-th component and 0 at the other components. In this setting, ϕ is an A-module isomorphism if and only if x_{ϕ} is a unit in $\mathrm{M}_{n}(A)$.
(a) Prove that x is a unit in $\mathrm{M}_{n}(A)$ if and only if $\operatorname{det} x \in A^{\times}$.
(b) Suppose $\phi: A^{n} \rightarrow A^{n}$ is an A-module. Prove that the following statements are equivalent.
i. ϕ is surjective.
ii. For all maximal ideals \mathfrak{m} of A, the induced A / \mathfrak{m}-linear map

$$
\bar{\phi}:(A / \mathfrak{m})^{n} \rightarrow(A / \mathfrak{m})^{n}, \quad \bar{\phi}\left(x+\mathfrak{m}^{n}\right):=\phi(x)+\mathfrak{m}^{n}
$$

is a well-defined bijection.
iii. ϕ is bijective.
(Hint. For linear maps from a vector space to itself, we know that surjectivity implies injectivity. So the first part implies the second part. To show the third part, suppose $\operatorname{det}\left(x_{\phi}\right)$ is not a unit, and deduce that there exists a maximal ideal such that x_{ϕ} modulo \mathfrak{m} is not invertible.)
4. Suppose A is a unital commutative ring and $\phi: A^{n} \rightarrow A^{m}$ is a surjective A-module homomorphism. Prove that $n \geq m$.
(Hint. Think about $\bar{\phi}:(A / \mathfrak{m})^{n} \rightarrow(A / \mathfrak{m})^{m}$.)
5. An A-module M is called Noetherian if the following equivalent statements hold.
(a) Every chain $\left\{N_{i}\right\}_{i \in I}$ of submodules of M has a maximum.
(b) Every non-empty family of submodules of M has a maximal element.
(c) The ascending chain condition holds in M; that means if

$$
N_{1} \subseteq N_{2} \subseteq \cdots
$$

are submodules of M, then there exists i_{0} such that

$$
N_{i_{0}}=N_{i_{0}+1}=\cdots .
$$

(d) All the submodules of M are finitely generated.

Use a similar argument as in the case for rings and show that the above statements are equivalent; you do not need to submit this as part of your HW assignment. Notice that a ring A is Noetherian if and only if it is a Noetherian A-module.
(a) Suppose N is a submodule of M. Prove that M is Noetherian if and only if M / N and N are Noetherian.
(b) Suppose A is a Noetherian ring and M is a finitely generated A module. Prove that M is Noetherian.
6. Suppose A is a unital commutative ring and $\phi: A^{n} \rightarrow A^{m}$ is an injective A-module homomorphism.
(a) Suppose A is a Noetherian ring. Prove that $n \leq m$.
(b) Prove that $n \leq m$ even if A is not Noetherian.
(Hint. For the first part, suppose to the contrary that $n>m$ and write A^{n} as $A^{m} \oplus A^{n-m}$. This way, you can view the image of ϕ as a submodule of A^{n} and

$$
\phi\left(A^{n}\right) \oplus A^{n-m} \subseteq A^{n}
$$

Because ϕ is injective, we obtain that

$$
\phi^{2}\left(A^{n}\right) \oplus \phi\left(A^{n-m}\right) \oplus A^{n-m} \subseteq A^{n} .
$$

Repeating this argument, for every positive integer k, we obtain the following (internal) direct sum:

$$
\phi^{k}\left(A^{n}\right) \oplus \phi^{k-1}\left(A^{n-m}\right) \oplus \cdots \oplus \phi\left(A^{n-m}\right) \oplus A^{n-m} \subseteq A^{n} .
$$

Hence,

$$
A^{n-m} \subsetneq A^{n-m} \oplus \phi\left(A^{n-m}\right) \subsetneq A^{n-m} \oplus \phi\left(A^{n-m}\right) \oplus \phi^{2}\left(A^{n-m}\right) \subsetneq \cdots,
$$

which is a contradiction.
For the second part, let $x_{\phi} \in \mathrm{M}_{m, n}(A)$ be the matrix associated with ϕ. Let A_{0} be the subring of A which is generated by 1 and entries of x_{ϕ}. Notice that since ϕ is given by matrix multiplication by x_{ϕ}, its restriction to A_{0}^{n} gives us an A_{0}-module homomorphism from A_{0}^{n} to A_{0}^{m}. Because ϕ is injective, so is its restriction to A_{0}^{n}. Argue why A_{0} is Noetherian, and deduce that $n \leq m$.)

Remark. During lecture, we used field of fractions and gave a much easier proof when A is an integral domain.
7. Suppose A is a unital commutative ring and M is a finitely generated A module. Let

$$
d(M):=\text { minimum number of generators of } M,
$$

and

$$
\operatorname{rank}(M):=\text { maximum number of linearly independent elements of } M \text {. }
$$

Prove that $\operatorname{rank}(M) \leq d(M)$.
(Hint. Suppose $d(M)=n$ and $\operatorname{rank}(M)=m$. Then there exist a surjective A-module homomorphism

$$
\phi: A^{n} \rightarrow M
$$

and an injective A-module homomorphism

$$
\psi: A^{m} \rightarrow M
$$

Suppose $\left\{e_{i}\right\}_{i=1}^{m}$ is the standard A-base of A^{m}. Deduce that there exist $v_{i} \in A^{n}$ such that

$$
\phi\left(v_{i}\right)=\psi\left(e_{i}\right)
$$

for all i. Let $\theta: A^{m} \rightarrow A^{n}$ be the A-module homomorphism given by $\theta\left(e_{i}\right)=v_{i}$ for all i. Then the following diagram commutes.

Deduce that θ is injective.)
8. Suppose A is a unital commutative ring and M is a finitely generated A module. Suppose $d(M)=\operatorname{rank}(M)=n$.
(a) Suppose A is Noetherian. Prove that $M \simeq A^{n}$.
(b) Prove that $M \simeq A^{n}$ even if A is not Noetherian.
(Hint. Similar to the previous problem, get a commutative diagram

where ψ is injective and ϕ is surjective, and obtain that θ is injective. Use injectivity of ψ and deduce that the following is an internal direct sum

$$
\theta\left(A^{n}\right) \oplus \operatorname{ker} \phi \subseteq A^{n} .
$$

Use an argument similar to problem 5(a) to deal with the Noetherian case; show that if $\operatorname{ker} \phi \neq 0$, we get a contradiction.

To show the general case, again suppose to the contrary that there exists $\mathbf{x}:=\left(x_{1}, \ldots, x_{n}\right) \in \operatorname{ker} \phi \backslash\{0\}$. Let $x_{\theta} \in \mathrm{M}_{n}(A)$ be the matrix associated with θ. Let A_{0} be the subring of A which is generated by $1, x_{i}$'s, and entries of x_{θ}. Let $M_{0}:=\phi\left(A_{0}^{n}\right)$. Argue why we have the following commutative diagram

and θ and ψ are injective, and $\mathbf{x} \in \operatorname{ker} \phi$. Discuss why A_{0} is Noetherian, and obtain a contradiction.)

Remark. There is a much easier argument when A is an integral domain. Think about that case.

