1 Homework 1.

1. A Bezout domain is an integral domain D in which for all $a, b \in D$, there exists $c \in D$ such that

$$
\langle a, b\rangle=\langle c\rangle .
$$

(a) Prove that an integral domain D is a Bezout domain if and only if for all $a, b \in D \backslash\{0\}$ there exists $d \in D$ such that
i. $d \mid a$ and $d \mid b$, and
ii. $d \in\langle a, b\rangle$.
(Notice that if d satisfies the above properties and d^{\prime} is another common divisor of a and b, then $d^{\prime} \mid d$. So we refer to such a d as a greatest common divisor of a and b.)
(b) Prove that every finitely generated ideal of a Bezout domain is principal.
(c) Prove that D is a PID if and only if it is both a UFD and a Bezout domain. (Hint. In class, we show that every PID is UFD. For the converse, suppose \mathfrak{a} is a non-zero proper ideal. Let $a \in \mathfrak{a}$ be an element with smallest number of irreducible factors. Show that for every $b \in \mathfrak{a}$, $\langle a, b\rangle=\langle a\rangle$.)
2. Let A be a subring of $\mathbb{Q}[x, y]$ which is generated by $x, x y, x y^{2}, \ldots$; that means

$$
A:=\mathbb{Q}\left[x, x y, x y^{2}, \ldots\right] .
$$

Prove that A is not Noetherian.
(Hint. Consider the chain of ideals

$$
\left.\langle x\rangle \subseteq\langle x, x y\rangle \subseteq\left\langle x, x y, x y^{2}\right\rangle \subseteq \cdots .\right)
$$

3. Let D be a UFD.
(a) (Rational root criterion) Suppose $a_{i} \in D$ and $\frac{r}{s}$ is a zero of

$$
a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0},
$$

where $r, s \in D$ and r and s do not have a common irreducible factor. Prove that $s \mid a_{n}$ and $r \mid a_{0}$.
(b) (Integrally closed) Prove that a fraction $\frac{r}{s}$ is a zero of a monic polynomial in $D[x]$ if and only if it belongs to D.
(c) Prove that $\mathbb{Z}[2 \sqrt{2}]$ is not a UFD.
(Hint. Show that $a_{n} r^{n}+a_{n-1} r^{n-1} s+\cdots+a_{1} r s^{n-1}+a_{0} s^{n}=0$. Deduce that

$$
r \mid a_{0} s^{n} \quad \text { and } \quad s \mid a_{n} r^{n} .
$$

Use factorization into irreducibles and the assumption that r and s do not have a common irreducible factor, and obtain that $r \mid a_{0}$ and $s \mid a_{n}$. For the last part, notice that $\sqrt{2}=\frac{2 \sqrt{2}}{2}$ is a zero of the monic polynomial $x^{2}-2$, but it is not in $\mathbb{Z}[2 \sqrt{2}]$.)
4. Let $A:=\mathbb{Z}+x \mathbb{Q}[x]$; this means

$$
A=\left\{a_{0}+a_{1} x+\cdots+a_{n} x^{n} \mid a_{0} \in \mathbb{Z}, a_{1}, \ldots, a_{n} \in \mathbb{Q}, n \in \mathbb{Z}^{+}\right\}
$$

(a) Prove that $f(x) \in A$ is irreducible if and only if either $f(x)= \pm p$ where p is a prime integer or $f(x) \in \mathbb{Q}[x]$ is irreducible and $f(0)= \pm 1$.
(b) Prove that x cannot be written as a product of irreducibles in A.
(c) Prove that A is not either a UFD or Noetherian.
5. Suppose A is a unital commutative ring.
(a) Let $\Sigma:=\{\mathfrak{a} \unlhd A \mid \mathfrak{a}$ is not finitely generated $\}$. Suppose Σ is not empty. Prove that Σ has a maximal element.
(b) Suppose \mathfrak{p} is a maximal element of Σ. Prove that \mathfrak{p} is a prime ideal.
(c) (Cohen) Suppose all the prime ideals of A are finitely generated. Prove that A is Noetherian.
(Hint. For the first part use Zorn's lemma. Suppose \mathfrak{p} is a maximal element of Σ and it is not a prime ideal. Argue why \mathfrak{p} is a proper ideal, and deduce that there exist $a, b \in A$ such that $a, b \notin \mathfrak{p}$ and $a b \in \mathfrak{p}$. Deduce that $\mathfrak{p}+\langle a\rangle$ is a finitely generated ideal; say

$$
\mathfrak{p}+\langle a\rangle=\left\langle p_{1}+r_{1} a, \ldots, p_{n}+r_{n} a\right\rangle
$$

for some $p_{i} \in \mathfrak{p}$ and $r_{i} \in A$. Let

$$
(\langle a\rangle: \mathfrak{p}):=\{x \in A \mid x a \in \mathfrak{p}\} .
$$

Notice that this is an ideal and it properly contains \mathfrak{p}. Deduce that

$$
(\langle a\rangle: \mathfrak{p})
$$

is a finitely generated ideal; say

$$
(\langle a\rangle: \mathfrak{p})=\left\langle s_{1}, \ldots, s_{m}\right\rangle
$$

for some $s_{i} \in A$. Prove that

$$
\mathfrak{p}=\left\langle p_{1}, \ldots, p_{n}, s_{1} a, \ldots, s_{m} a\right\rangle .
$$

To this end, first show that the RHS is a subset of the LHS. Next take $x \in \mathfrak{p}$. Argue that there exist a_{1}, \ldots, a_{n} such that

$$
x=a_{1}\left(p_{1}+r_{1} a\right)+\cdots+a_{n}\left(p_{n}+r_{n} a\right) .
$$

Deduce that $\sum_{i=1}^{n} a_{i} r_{i} \in(\langle a\rangle: \mathfrak{p})$. Complete the proof. $)$
6. Suppose $f(x) \in(\mathbb{Z} / n \mathbb{Z})[x]$ is a monic polynomial of degree d. Prove that

$$
|(\mathbb{Z} / n \mathbb{Z})[x] /\langle f(x)\rangle|=n^{d} .
$$

(Hint. Use long division to show that for every $g(x) \in(\mathbb{Z} / n \mathbb{Z})[x]$ there exists a unique polynomial $r(x) \in(\mathbb{Z} / n \mathbb{Z})[x]$ of degree at most $d-1$ such that

$$
g(x)+\langle f(x)\rangle=r(x)+\langle f(x)\rangle .)
$$

7. Suppose $p \in \mathbb{Z}$ is prime. Prove that the following statements are equivalent.
(a) p is not irreducible in $\mathbb{Z}[i]$.
(b) There exist $a, b \in \mathbb{Z}$ such that $p=a^{2}+b^{2}$.
(c) $x^{2} \equiv-1(\bmod p)$ has a solution.
(Hint. Suppose $p=z_{1} z_{2}$ and z_{i} 's are not unit. Deduce that $\left|z_{i}\right|^{2}=p$. Suppose $p=a^{2}+b^{2}$, look at both sides modulo p, argue why b is invertible in $\mathbb{Z} / p \mathbb{Z}$, and deduce that $x^{2}+1$ has a zero in $\mathbb{Z} / p \mathbb{Z}$. Suppose $p \mid x_{0}^{2}+1$. Deduce that $p \mid\left(x_{0}+i\right)\left(x_{0}-i\right)$, and obtain that p is not prime. Use the fact that $\mathbb{Z}[i]$ is a PID.)
8. Suppose $p \in \mathbb{Z}$ is prime. Prove that the following statements are equivalent.
(a) p is not irreducible in $\mathbb{Z}[\omega]$ where $\omega:=\frac{-1+i \sqrt{3}}{2}$.
(b) There exist $a, b \in \mathbb{Z}$ such that $p=a^{2}-a b+b^{2}$.
(c) $x^{2}-x+1 \equiv 0(\bmod p)$ has a solution.
(Hint. The same line of argument as in the previous problem.)
