Math200b, lecture 20

Golsefidy

Normal extensions.

In the previous lecture we were proving the following theorem:

Theorem 1 Suppose F is a field, \overline{F} is an algebraic closure of F, and $F \subseteq E \subseteq \overline{F}$ is a subfield. Then the following statements are equivalent.

- 1. For any $\sigma \in \operatorname{Aut}(\overline{F}/F)$, $\sigma(E) = E$.
- 2. For any $\alpha \in E$, there are $\alpha_i \in E$ such that

$$m_{\alpha,F}(x) = \prod_{i=1}^{n} (x - \alpha_i)$$

3. There is a non-empty subset \mathcal{F} of $F[x] \setminus F$ such that E is a splitting field of \mathcal{F} over F.

4. There is a family $\{E_i\}_{i \in I}$ of subfields of \overline{F} , and a family of polynomials $\{p_i\}_{i \in I} \subseteq F[x] \setminus F$ such that

(a)
$$E_i \subseteq F$$
 is a splitting field of $p_i(x)$.

(b) For any $i, j \in I$, there is $k \in I$ such that $E_i \cup E_j \subseteq E_k$.

(c)
$$E = \bigcup_{i \in I} E_i$$
.

Proof. (Continue) (4) \Rightarrow (1). For any $\sigma \in Aut(\overline{F}/F)$ and any $i \in I$, we have already proved that $\sigma(E_i) = E_i$; and so

$$\sigma(\mathsf{E}) = \bigcup_{i \in I} \sigma(\mathsf{E}_i) = \bigcup_{i \in I} \mathsf{E}_i = \mathsf{E}.$$

Theorem 2 Suppose \overline{F} is an algebraic closure of $F, F \subseteq E \subseteq \overline{F}$ is a subfield, and E/F is a normal extension. Then the restriction map $r_E : \operatorname{Aut}(\overline{F}/F) \to \operatorname{Aut}(E/F), r_E(\sigma) := \sigma|_E$ is a well-defined onto group homomorphism, and ker $r_E = \operatorname{Aut}(\overline{F}/E)$; in particular we have and $\operatorname{Aut}(\overline{F}/E) \trianglelefteq \operatorname{Aut}(\overline{F}/F)$ and

$$\operatorname{Aut}(\mathsf{E}/\mathsf{F}) \simeq \operatorname{Aut}(\overline{\mathsf{F}}/\mathsf{F})/\operatorname{Aut}(\overline{\mathsf{F}}/\mathsf{E}).$$

Proof. Since E/F is a normal extension, for any $\sigma \in Aut(\overline{F}/F)$ $\sigma(E) = E$; and so $r_E(\sigma) \in Aut(E/F)$, which means r_E is a welldefined function. It is easy to see that r_E is a group homomorphism.

Notice that, since $F \subseteq E \subseteq \overline{F}$, \overline{F} is an algebraic closure of E. And so any $\overline{\sigma} : E \xrightarrow{\sim} E$ can be extended to $\sigma : \overline{F} \xrightarrow{\sim} \overline{F}$; in particular $\sigma|_F = \overline{\sigma}|_F = \operatorname{id}_F$. Hence $\sigma \in \operatorname{Aut}(\overline{F}/F)$ and $r_E(\sigma) = \overline{\sigma}$, which means that r_E is surjective.

By definition, it is clear that ker $r_E = Aut(\overline{F}/E)$; and so by the first isomorphism theorem we have

$$\operatorname{Aut}(E/F) \simeq \operatorname{Aut}(\overline{F}/F)/\operatorname{Aut}(\overline{F}/E).$$

Theorem 3 Suppose \overline{F} is an algebraic closure of $F, F \subseteq E_1 \subseteq E_2 \subseteq \overline{F}$ are subfields, and E_1/F and E_2/F are normal extensions. Then the restriction maps give us well-defined compatible onto group homomorphisms:

moreover ker $r_{E_2/E_1} = \operatorname{Aut}(E_2/E_1) \trianglelefteq \operatorname{Aut}(E_2/F)$ and

 $\operatorname{Aut}(\mathsf{E}_1/\mathsf{F}) \simeq \operatorname{Aut}(\mathsf{E}_2/\mathsf{F})/\operatorname{Aut}(\mathsf{E}_2/\mathsf{E}_1).$

Similarly if $E_1 \subseteq E_2 \subseteq E_3 \subseteq \overline{F}$ and E_i/F are normal extensions, then $r_{E_3/E_1} = r_{E_2/E_1} \circ r_{E_3/E_2}$.

Proof. We have already proved that r_{E_i} are well-defined onto group homomorphisms. By a similar argument r_{E_2/E_1} is a well-defined group homomorphism. Since clearly we have $r_{E_1} = r_{E_2/E_1} \circ r_{E_2}$, we deduce that r_{E_2/E_1} is onto. By definition ker $r_{E_2/E_1} = \operatorname{Aut}(E_2/E_1)$; and so by the first isomorphism theorem we get the mentioned isomorphism. The last part of Theorem is clear.

Theorem 4 Suppose \overline{F} is an algebraic closure of $F, F \subseteq E \subseteq \overline{F}$ is a subfield, and E/F is a normal extension. Let $\mathcal{F} := \{E' | E' \subseteq E, E'/F \text{ finite normal }\}$. Then

$$\begin{split} r: \operatorname{Aut}(\mathsf{E}/\mathsf{F}) &\to \{(\sigma_{\mathsf{E}'}) \in \prod_{\mathsf{E}' \in \mathcal{F}} \operatorname{Aut}(\mathsf{E}'/\mathsf{F}) | \, r_{\mathsf{E}''/\mathsf{E}'}(\sigma_{\mathsf{E}''}) = \sigma_{\mathsf{E}'} \},\\ r(\sigma) := (r_{\mathsf{E}/\mathsf{E}'}(\sigma))_{\mathsf{E}' \in \mathcal{F}} \end{split}$$

is a group isomorphism.

The RHS in the display of the second part of the above theorem is called the inverse limit of Aut(E'/F)'s and it is denoted by

 $\underset{\leftarrow}{\lim}_{E'\in\mathcal{F}}\operatorname{Aut}(E'/F).$ So we are showing that

$$\operatorname{Aut}(\mathsf{E}/\mathsf{F}) \simeq \underset{\mathsf{E}' \in \mathcal{F}}{\underset{\mathsf{E}' \in \mathcal{F}}{\operatorname{Aut}(\mathsf{E}'/\mathsf{F})}}.$$

Before we get to the proof of Theorem 4 we make the following observation:

Lemma 5 E/F is a finite normal extension if and only if E is a splitting field of some $p(x) \in F[x] \setminus F$ over F.

Proof of Lemma. (\Rightarrow) Since E/F is a finite extension, there are α_i 's in E such that $E = F[\alpha_1, \ldots, \alpha_n]$. Let $p(x) := \prod_{i=1}^n m_{\alpha_i,F}(x)$. Since E/F is a normal extension, all the zeros of $m_{\alpha_i,F}(x)$'s are in E; and so all the zeros of p(x) are in E. As E is generated by α_i 's over F, we deduce that E is a splitting field of p(x) over F.

(\Leftarrow) Since E is a splitting of p(x), E/F is a normal extension, and for some α_i 's in E we have E = F[$\alpha_1, \ldots, \alpha_n$] and p(x) = $\prod_{i=1}^{n} (x - \alpha_i)$. Hence α_i 's are algebraic over F; and so

$$[E:F] = \prod_{i=1}^{n} [F[\alpha_1, \ldots, \alpha_i] : F[\alpha_1, \ldots, \alpha_{i-1}]] \le \prod_{i=1}^{n} [F[\alpha_i] : F] < \infty$$

Proof of Theorem 4. Well-definedness. For any $E' \in \mathcal{F}$, $r_{E/E'}$ is an onto group homomorphism; and so

$$\widehat{\mathbf{r}}: \operatorname{Aut}(\mathsf{E}/\mathsf{F}) \to \prod_{\mathsf{E}' \in \mathcal{F}} \widehat{\mathbf{r}}(\sigma) := \{\mathbf{r}_{\mathsf{E}/\mathsf{E}'}(\sigma)\}_{\mathsf{E}' \in \mathcal{F}},$$

is a group homomorphism. By Theorem 3 we get that $\widehat{r}(\sigma) \in \lim_{E' \in \mathcal{F}} \operatorname{Aut}(E'/F)$; and so r is a well-defined group homomorphism.

Injectivity. Since E/F is a normal extension, there are E_i such that E_i is a splitting field of a polynomial $p_i(x) \in F[x]$ over F and E = $\bigcup_{i \in I} E_i$. Hence E = $\bigcup_{E' \in \mathcal{F}} E'$. Then for any $\alpha \in E$ there is $E'_{\alpha} \in \mathcal{F}$ such that $\alpha \in E'_{\alpha}$; so if $\sigma \in \ker r$, then for any $\alpha \in E$ we have

$$\sigma(\alpha) = r_{E/E'_{\alpha}}(\sigma)(\alpha) = \alpha,$$

which implies that $\sigma = id_E$; and so r is injective.

Surjectivity. Suppose $\{\sigma_{E'}\}_{E' \in \mathcal{F}} \in \lim_{E' \in \mathcal{F}} \operatorname{Aut}(E'/F)$. Let $\sigma : E \to E$ be $\sigma(\alpha) = \sigma_{E_0}(\alpha)$ if $\alpha \in E_0$ and $E_0 \in \mathcal{F}$. As we discussed above $E = \bigcup_{E' \in \mathcal{F}} E'$; and so for any $\alpha \in E$ there is $E_0 \in \mathcal{F}$ such that $\alpha \in E_0$. Next we show that $\sigma(\alpha)$ is independent of the choice of E_0 ; and so it is a well-defined function. Suppose E_0 and E_1 are in \mathcal{F} and $\alpha \in E_0 \cap E_1$. Then E_0 is a splitting

field of some $p_0(x) \in F[x]$ over F and E_1 is a splitting field of some $p_1(x) \in F[x]$ over F. Let $E_2 \subseteq E$ be a splitting field of $p_0(x)p_1(x)$ over F; notice that since E/F is a normal extension and $E_0 \cup E_1 \subseteq E$, there is such an E_2 . We have $E_0 \cup E_1 \subseteq E_2$. Since $\{\sigma_{E'}\}_{E' \in \mathcal{F}} \in \lim_{E' \in \mathcal{F}} Aut(E'/F)$, we have $r_{E_2/E_1}(\sigma_{E_2}) = \sigma_{E_1}$ and $r_{E_2/E_0}(\sigma_{E_2}) = \sigma_{E_0}$. Hence

$$\sigma_{\mathsf{E}_0}(\alpha) = \mathsf{r}_{\mathsf{E}_2/\mathsf{E}_0}(\sigma_{\mathsf{E}_2})(\alpha) = \sigma_{\mathsf{E}_2}(\alpha) = \mathsf{r}_{\mathsf{E}_2/\mathsf{E}_1}(\sigma_{\mathsf{E}_2})(\alpha) = \sigma_{\mathsf{E}_1}(\alpha).$$

For $\alpha_1, \alpha_2 \in E \setminus \{0\}$, there are $E_i \in \mathcal{F}$ such that $\alpha_i \in E_i$. By the above argument, there is $E_3 \in \mathcal{F}$ such that $\alpha_1, \alpha_2 \in E_3$. Hence $\alpha_1 \pm \alpha_2 \in E_3$ and $\alpha_1 \alpha_2^{\pm 1} \in E_3$; and so $\sigma(\alpha_i) = \sigma_{E_3}(\alpha_i)$, $\sigma(\alpha_1 \pm \alpha_2) = \sigma_{E_3}(\alpha_1 \pm \alpha_2)$, and $\sigma(\alpha_1 \alpha_2^{\pm 1}) = \sigma_{E_3}(\alpha_1 \alpha_2^{\pm 1})$. Since σ_{E_3} is a homomorphism, we deduce that $\sigma(\alpha_1 \pm \alpha_2) = \sigma(\alpha_1) \pm \sigma(\alpha_2)$ and $\sigma(\alpha_1 \alpha_2^{\pm 1}) = \sigma(\alpha_1)\sigma(\alpha_2)^{\pm 1}$; and so σ is a homomorphism. Since $\sigma(1) = \sigma_F(1) = 1$ and E is a field, σ is injective. Notice that

$$\sigma(E) = \sigma(\bigcup_{E' \in \mathcal{F}} E') = \bigcup_{E' \in \mathcal{F}} \sigma(E') = \bigcup_{E' \in \mathcal{F}} \sigma_{E'}(E') = \bigcup_{E' \in \mathcal{F}} E' = E;$$

and so σ is an automorphism of E. Since $\sigma|_F = \sigma_F \in \operatorname{Aut}(F/F) = \{1\}$, we have that $\sigma \in \operatorname{Aut}(E/F)$. By definition of σ , we have $r_{E/E'}(\sigma) = \sigma_{E'}$ for any $E' \in \mathcal{F}$; and so $r(\sigma) = \{\sigma_{E'}\}_{E' \in \mathcal{F}}$, which implies that r is onto.

Remark. We will show that $\operatorname{Aut}(E'/F)$ is a finite group if E'/F is a finite normal extension; and so discrete topology makes it a compact group. By Tychonoff's theorem, $\prod_{E'\in\mathcal{F}} \operatorname{Aut}(E'/F)$ is a compact group. It is easy to check that $\lim_{E'\in\mathcal{F}} \operatorname{Aut}(E'/F)$ is a closed subgroup of $\prod_{E'\in\mathcal{F}} \operatorname{Aut}(E'/F)$; and so the induced product topology makes it a compact group. Therefore the above isomorphism makes $\operatorname{Aut}(E/F)$ a compact group. This topology on $\operatorname{Aut}(E/F)$ is called Krull topology.

Aut of finite normal extensions.

By Theorem 4 in principle understanding of an infinite normal extension can be reduced to understanding of finite normal extensions. So next we focus on such extensions.

Theorem 6 Suppose $\sigma : F \to F'$ is a field isomorphism. Suppose E is a splitting field of $f(x) \in F[x]$ over F and E' is a splitting field of $\sigma(f)$ over F'. Then

 $|\{\widehat{\sigma}: E \to E' | \widehat{\sigma} \text{ is an isomorphism }, \widehat{\sigma}|_F = \sigma\}| \leq [E:F];$

and equality holds if and only if all the irreducible factors of f *do not have multiple zeros in* E.

Proof. Suppose $f(x) = \prod_{i=1}^{m} f_i(x)^{n_i}$ where $f_i(x)$ are distinct irreducible polynomials in F[x]. We say that $f_{sf}(x) := \prod_{i=1}^{m} f_i(x)$ is the square-free factor of f(x). First we observe that E is a splitting field of f(x) over F if and only if it is a splitting field of $f_{sf}(x)$ over F. We also observe that $\sigma(f_{sf}) = \sigma(f)_{sf}$. So W.L.O.G. we can and will assume that f(x) is square-free.

Now we proceed by induction on the degree of f(x). Suppose α is a zero of $f_1(x)$. Next we show that

 $|\{\overline{\sigma}: F[\alpha] \hookrightarrow E' | \overline{\sigma}|_F = \sigma\}| = \# \text{ of distinct zeros of } f_1(x) \text{ in } E.$

To prove this, it is enough to notice that

- (1) $\overline{\sigma}$ is uniquely determined by its value at α ;
- (2) $\overline{\sigma}(\alpha)$ is a zero of $\sigma(f_1)$;
- (3) for any zero $\alpha' \in E'$ of $\sigma(f_1)$, there is a field isomorphism $\overline{\sigma} : F[\alpha] \to F'[\alpha']$ such that $\overline{\sigma}|_F = \sigma$ and $\overline{\sigma}(\alpha) = \alpha'$;
- (4) since there is an isomorphism $\widehat{\sigma} : E \to E'$ such that $\widehat{\sigma}|_F = \sigma$, the number of distinct zeros of $\sigma(f_1)$ in E' is equal to the number of distinct zeros of f_1 in E.

For a given $\overline{\sigma}$ as above, we have $f(x) = (x - \alpha)h(x)$ and $\sigma(f) = \overline{\sigma}(f) = (x - \overline{\sigma}(\alpha))\overline{\sigma}(h)$ for some $h(x) \in F[\alpha][x]$. We notice that E is a splitting field of h(x) over $F[\alpha]$ and E' is a splitting field of $\overline{\sigma}(h)$ over $\overline{\sigma}(F[\alpha])$ (justify this). And so by the induction hypothesis,

 $|\{\widehat{\sigma}: E \to E' | \widehat{\sigma} \text{ is an isomorphism }, \widehat{\sigma}|_{F[\alpha]} = \overline{\sigma}\}| \leq [E:F[\alpha]].$

Let $\operatorname{Isom}_{\sigma}(E, E') := \{ \widehat{\sigma} : E \to E' | \widehat{\sigma} \text{ is an isomorphism }, \widehat{\sigma}|_{F} = \sigma \}$, and $\operatorname{Em}_{\sigma}(F[\alpha], E') := \{ \overline{\sigma} : F[\alpha] \hookrightarrow E' | \overline{\sigma}|_{F} = \sigma \}$. Consider the restriction function

$$r : \operatorname{Isom}_{\sigma}(E, E') \to \operatorname{Em}_{\sigma}(F[\alpha], E').$$

Notice that any $\overline{\sigma} \in \text{Em}_{\sigma}(F[\alpha], E')$ can be extended to an isomorphism from E to E'; this implies that r is onto. So we

have

$$\begin{split} |\operatorname{Isom}_{\sigma}(\mathsf{E},\mathsf{E}')| &= \sum_{\overline{\sigma}\in\operatorname{Em}_{\sigma}(\mathsf{F}[\alpha],\mathsf{E}')} |r^{-1}(\overline{\sigma})| \\ &\leq \sum_{\overline{\sigma}\in\operatorname{Em}_{\sigma}(\mathsf{F}[\alpha],\mathsf{E}')} [\mathsf{E}:\mathsf{F}[\alpha]] \\ &= |\operatorname{Em}_{\sigma}(\mathsf{F}[\alpha],\mathsf{E}')|[\mathsf{E}:\mathsf{F}[\alpha]] \\ &= (\# \text{ of distinct zeros of } f_1(x) \text{ in } \mathsf{E})[\mathsf{E}:\mathsf{F}[\alpha]] \\ &\leq (\deg f_1)[\mathsf{E}:\mathsf{F}[\alpha]] \\ &= [\mathsf{F}[\alpha]:\mathsf{F}][\mathsf{E}:\mathsf{F}[\alpha]] = [\mathsf{E}:\mathsf{F}]. \end{split}$$

Now we focus on exactly when equality holds. Suppose equality holds. Then by the above argument, we have that

deg $f_1 = #$ of distinct zeros of $f_1(x)$ in E.

Therefore all zeros of f_1 are distinct; by symmetry the same is true for f_i 's.

Next we assume that all the zeros of f_i 's are distinct in E, and by induction on deg f we prove that equality holds. Since $f_i \neq f_j$ are irreducible in F[x], $gcd(f_i, f_j) = 1$. This implies that there are $a, b \in F[x]$ such that $a(x)f_i(x) + b(x)f_j(x) = 1$. Hence f_i and f_j do not have common factors in E[x]. Thus $f(x) = f_{sf}(x)$ is square-free in E[x]. And so all the irreducible factors of f(x) in $F[\alpha][x]$ have distinct zeros in E. Hence by the induction hypothesis in the above setting for any $\overline{\sigma} \in Em_{\sigma}(F[\alpha], E')$ we have $|r^{-1}(\overline{\sigma})| = |Isom_{\overline{\sigma}}(E, E')| = [E : F[\alpha]]$. We also notice that

deg $f_1 = #$ of distinct zeros of $f_1(x)$ in E.

Hence we get

$$\begin{split} |\operatorname{Isom}_{\sigma}(\mathsf{E},\mathsf{E}')| &= \sum_{\overline{\sigma}\in\operatorname{Em}_{\sigma}(\mathsf{F}[\alpha],\mathsf{E}')} |\mathsf{r}^{-1}(\overline{\sigma})| \\ &= \sum_{\overline{\sigma}\in\operatorname{Em}_{\sigma}(\mathsf{F}[\alpha],\mathsf{E}')} [\mathsf{E}:\mathsf{F}[\alpha]] \\ &= |\operatorname{Em}_{\sigma}(\mathsf{F}[\alpha],\mathsf{E}')|[\mathsf{E}:\mathsf{F}[\alpha]] \\ &= (\# \text{ of distinct zeros of } \mathsf{f}_{1}(\mathsf{x}) \text{ in } \mathsf{E})[\mathsf{E}:\mathsf{F}[\alpha]] \\ &= (\deg \mathsf{f}_{1})[\mathsf{E}:\mathsf{F}[\alpha]] \\ &= [\mathsf{F}[\alpha]:\mathsf{F}][\mathsf{E}:\mathsf{F}[\alpha]] = [\mathsf{E}:\mathsf{F}]; \end{split}$$

and claim follows.

A polynomial $f(x) \in F[x]$ is called separable if all of its irreducible factors have distinct zeros in a splitting field E of f(x) over F.

Theorem 7 Suppose E is a splitting field of $f(x) \in F[x]$ over F. Then

$$|\operatorname{Aut}(E/F)| \leq [E:F];$$

moreover equality holds if and only if f(x) *is a separable polynomial.*

Proof. Notice that $Aut(E/F) = Isom_{id_F}(E, E)$; and claim follows from the previous theorem.

An algebraic extension E/F is called separable if for any $\alpha \in E$, $m_{\alpha,F}(x)$ is a separable polynomial. Here is an example of an algebraic extension which is not separable: let $E := \mathbb{F}_p(t)$ and $F := \mathbb{F}_p(t^p)$. Then t is a zero of $x^p - t^p$. Notice that by Eisenstein's criterion $x^p - t^p \in F[x]$ is irreducible; and so $m_{t,F}(x) = x^p - t^p$. Since the characteristic of E is p, we have $m_{t,F}(x) = (x-t)^p$; and so it has multiple zeros in E. This implies that E/F is not a separable extension. It is worth pointing out that E is a splitting field of $x^p - t^p$. Hence E/F is a finite normal extension which is not separable.