Math200b, lecture 20

Golsefidy

Normal extensions.

In the previous lecture we were proving the following the-

orem.

Theorem 1 Suppose F is a field, F is an algebraic closure of F, and

F C E C Fisasubfield. Then the following statements are equivalent.
1. Forany o € Aut(F/F), o(E) = E.

2. Forany « € E, there are «; € E such that

n

mar(x) = | [6c- o)

i=1
3. There is a non-empty subset ¥ of F[x| \ F such that E is a
splitting field of F over F.



4. There is a family {E;}ic1 of subfields of F, and a family of
polynomials {pi}ie1 C F[x] \ F such that

(a) E; C Fis a splitting field of pi(x).
(b) Foranyi,j €1, there is k € I such that E; U E; C Ey.
(¢) B = Uier Ei.

Proof. (Continue) (4)=(1). For any o € Aut(F/F) and any i€,
we have already proved that o(E;) = Ei; and so
o(E) = U o(E;) = U F=E.
iel i€l

Theorem 2 Suppose F is an algebraic closure of F, F C E C F
is a subfield, and E/F is a normal extension. Then the restriction
map r : Aut(F/F) — Aut(E/F), 1e(0) := ol is a well-defined onto
group homomorphism, and ker rg = Aut(F/E); in particular we have
and Aut(F/E) < Aut(F/F) and

Aut(E/F) = Aut(F/F)/Aut(F/E).

Proof. Since E/F is a normal extension, for any o € Aut(F/F)

o(E) = E; and so rg(0) € Aut(E/F), which means r¢ is a well-
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defined function. It is easy to see that 1t is a group homomor-
phism.

Notice that, since F C E C F, F is an algebraic closure of
E. Andsoany 0 : E — E can be extended to o : F — F; in
particular o|f = off = idr. Hence o € Aut(F/F) and (o) = G,
which means that 1¢ is surjective.

By definition, it is clear that ker ¢ = Aut(f/ E); and so by

the first isomorphism theorem we have
Aut(E/F) = Aut(F/F)/Aut(F/E).
|

Theorem 3 Suppose F is an algebraic closure of F, F CE; C Ey CF
are subfields, and &, /F and Ey/F are normal extensions. Then the
restriction maps give us well-defined compatible onto group homo-

morphisms:

T’El

T

TE9/Eq,

Aut(F/F) —23 Aut(Es/F) —L5 Aut(E, /F);
moreover ker Tg, /g, = Aut(Ey/Eq) < Aut(Ey/F) and
Aut(El/F) = AUt(EQ/F)/AU.t(EQ/El)
3



Similarly if By C By C B3 C F and E; | F are normal extensions, then

TE3/E; = TEy/E; © TE3/E,:

Proof. We have already proved that rg, are well-defined onto
group homomorphisms. By a similar argument vg, /g, is a
well-defined group homomorphism. Since clearly we have

TE, = TE,/E, © TE,, We deduce that 1¢, /g, is onto. By definition

kerrg,/e, = Aut(Ez/E;); and so by the first isomorphism the-
orem we get the mentioned isomorphism. The last part of

Theorem is clear. B

Theorem 4 Suppose F is an algebraic closure of F, F C E C F is
a subfield, and E/F is a normal extension. Let ¥ = {F'|E C
E, E'/F finite normal }. Then

v+ Aut(E/F) — {(oe) € | | Aut(E'/P)|rerp(oe) = o,
EeF

r(0) := (TE/E'(G))E'e?‘
is a group isomorphism.
The RHS in the display of the second part of the above theorem
is called the inverse limit of Aut(E’/F)’s and it is denoted by
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lim Aut(E’/F). So we are showing that
«—FteF

Aut(E/F) = l(in Aut(E’/F).
EeF
Before we get to the proof of Theorem 4 we make the following

observation:

Lemma 5 E/F is a finite normal extension if and only if E is a
splitting field of some p(x) € F[x] \ F over F.

Proof of Lemma. (=) Since E/F is a finite extension, there are
oi’s in E such that E = Flo, ..., on]. Let p(x) := [TiL; e, r(%).
Since E/F is a normal extension, all the zeros of my, r(x)’s are
in E; and so all the zeros of p(x) are in E. As E is generated by
o’s over F, we deduce that E is a splitting field of p(x) over F.

(&) Since E is a splitting of p(x), E/F is a normal extension,
and for some «;’s in E we have E = Fl«y, ..., an] and p(x) =

[TiL,(x — o). Hence «’s are algebraic over F; and so

Fly, ... :F[ocl,...,oq_l]]sl_[[F[ocl] F] < oo.

i=1

(_'
l =)



Proof of Theorem 4. Well-definedness. For any £’ € ¥, ¢ ¢/

is an onto group homomorphism; and so

T Aut(E/F) = | | T(0) = {rejed0)}eer
E'efF
is a group homomorphism. By Theorem 3 we get that (o) €
@E’e?’ Aut(E’/F); and so r is a well-defined group homomor-
phism.

Injectivity. Since E/F is a normal extension, there are E;
such that E; is a splitting field of a polynomial pi(x) € F[x] over
Fand E = [J;ic; Ei. Hence E = (Jper E'. Then for any o € E
there is E/, € ¥ such that « € E/; so if o0 € kerr, then for any
« € E we have

o(et) = 1/, (0)(0) = &,
which implies that ¢ = idg; and so r is injective.

Surjectivity. Suppose {0 }reF € l(iLnEle?: Aut(E’/F). Leto
E — Ebe o(x) = og, () if x € Egand Ey € F. As we discussed
above E = [Jpes E/; and so for any « € E there is Ey € ¥
such that « € Ej. Next we show that o(«) is independent of
the choice of Ej; and so it is a well-defined function. Suppose

Ep and E; are in F and o« € Ey N E;. Then Ey is a splitting
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field of some py(x) € F[x] over F and E, is a splitting field of
some pi(x) € F[x] over F. Let E; C E be a splitting field of
Po(x)p1(x) over F; notice that since E/F is a normal extension
and Eg U E; C E, there is such an E;. We have Ej U E; C Es.

Since {op }per € 1<i_r_nE/eT Aut(E’/F), we have 1, /g,(0F,) = OF,

and T, /¢,(0F,) = of,. Hence

GEO(OC) = TEQ/EO(GEQ)(OC) = Of,(x) = TEQ/El(GEg)(‘X) = o, ().

For oy, ¢y € E\ {0}, there are E; € ¥ such that o € E;. By
the above argument, there is E5 € ¥ such that «;, s € Es.
Hence oy + oy € E3 and oclocé—” € Es; and so o(o) = o, (o),
o(o £ 0g) = o, (0 £ o), and o(o o) = o, (g 05!). Since o,
is a homomorphism, we deduce that o(o; + o) = 0(¢1) £ (o)
and o( ') = o(xg)o(o)*!; and so o is a homomorphism.
Since o(1) = of(1) = 1 and E is a field, o is injective. Notice that
o) = o(|_JE) = [ Jo®)= [ Joe®)= | JE=E
E'eF E'eF E'eF EeF
and so o is an automorphism of E. Since o|r = of € Aut(F/F) =
{1}, we have that 0 € Aut(E/F). By definition of o, we have
Te/p(0) = op for any B’ € F; and so (o) = {0 }reF, which

implies that r is onto. |



Remark. We will show that Aut(E’/F)is a finite groupif E’/F
is a finite normal extension; and so discrete topology makes
it a compact group. By Tychonoff’s theorem, [[¢ce Aut(E’/F)
is a compact group. It is easy to check that h(_lEE/E(F Aut(E’/F)
is a closed subgroup of [[f<# Aut(E’/F); and so the induced
product topology makes it a compact group. Therefore the
above isomorphism makes Aut(E/F) a compact group. This

topology on Aut(E/F) is called Krull topology.

Aut of finite normal extensions.

By Theorem 4 in principle understanding of an infinite nor-
mal extension can be reduced to understanding of finite nor-

mal extensions. So next we focus on such extensions.

Theorem 6 Suppose o : F — V' is a field isomorphism. Suppose E
is a splitting field of f(x) € F[x]| over F and ¥’ is a splitting field of
o(f) over F'. Then

{0 : & — E'| 0 is an isomorphism ,o|f = o}| < [E : F];

and equality holds if and only if all the irreducible factors of f do not

have multiple zeros in E.



Proof. Suppose f(x) = []i%, fi(x)™ where fi(x) are distinct ir-
reducible polynomials in F[x]. We say that fs(x) := []iL, fi(x)
is the square-free factor of f(x). First we observe that E is a
splitting field of f(x) over F if and only if it is a splitting field of
fsf(x) over F. We also observe that o(fss) = o(f)sr. So W.L.O.G.
we can and will assume that f(x) is square-free.

Now we proceed by induction on the degree of f(x). Sup-

pose « is a zero of f1(x). Next we show that

|{o : Fla] — E’| o|f = 0}| = # of distinct zeros of f;(x) in E.
To prove this, it is enough to notice that

(1) ois uniquely determined by its value at «;

(2) o(x) is a zero of o(f;);

(3) for any zero &’ € E’ of o(f;), there is a field isomorphism

0 : Fla] = F[a] such that o|f = 0 and o(x) = «’;

(4) since there is an isomorphism ¢ : E — E’ such that o =
o, the number of distinct zeros of o(f;) in E’ is equal to

the number of distinct zeros of f; in E.



For a given ¢ as above, we have f(x) = (x — )h(x) and
o(f) = o(f) = (x —o(x))o(h) for some h(x) € F[x][x]. We notice
that E is a splitting field of h(x) over F[x] and E’ is a splitting
field of o(h) over o(F[«]) (justify this). And so by the induction
hypothesis,

[{o: E — E’| 0 is an isomorphism , 0|4 = 0}| < [E : Fle]].

Let Isomy(E,E’) := {0 : E — F’| 0 is an isomorphism , 0| = ¢},
and Emq(F[x],E’) := {0 : Fla] — E’| ol = o}. Consider the

restriction function
T Isomg(E, E') — Em(F[], E).

Notice that any 0 € Emq(F[«], E’) can be extended to an iso-

morphism from E to E’; this implies that r is onto. So we
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have

lsome(E,E) = > (@)

oc€Emg(F[],E’)

< Z [E : Fl«]]

oeEmg(F[o],E’)
=|Emq(F[ee], E)|[E : F[x]]
=(# of distinct zeros of f;(x) in E)[E : F[«]]
<(deg f1)[E : Fl«]]
=[Fla] : F]J[E : Fla]] = [E : F].

Now we focus on exactly when equality holds. Suppose

equality holds. Then by the above argument, we have that
deg f; = # of distinct zeros of f;(x) in E.

Therefore all zeros of f; are distinct; by symmetry the same is
true for f;’s.

Next we assume that all the zeros of f;’s are distinct in E,
and by induction on deg f we prove that equality holds. Since
fi # f; are irreducible in F[x], gcd(fi, f;) = 1. This implies that
there are a,b € F[x] such that a(x)fi(x) + b(x)fj(x) = 1. Hence

f; and f; do not have common factors in E[x]. Thus f(x) = fg¢(x)
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is square-free in E[x]. And so all the irreducible factors of f(x)
in Flo][x] have distinct zeros in E. Hence by the induction
hypothesis in the above setting for any ¢ € Emq(F[«], E’) we
have |r71(0)| = |[Isoms(E, E’)| = [E : F[ex]]. We also notice that

deg f1 = # of distinct zeros of f;(x) in E.

Hence we get

some(E,E) = > @)

SeEmy(F[l,E)

= > [E:Fa]]

ocEmg(F[o],E’)
=|Emq(Fla], E)|[E : Flo]]
=(+# of distinct zeros of fi(x) in E)[E : F[«]]
=(deg f1)[E : Fle]]
=[F[«] : F][E : F[«]] = [E : F];

and claim follows. |
A polynomial f(x) € F[x] is called separable if all of its
irreducible factors have distinct zeros in a splitting field E of

f(x) over F.
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Theorem 7 Suppose E is a splitting field of f(x) € F[x] over F.
Then
| Aut(E/F)| < [E : F;

moreover equality holds if and only if f(x) is a separable polynomial.

Proof. Notice that Aut(E/F) = Isomiq.(E, E); and claim follows
from the previous theorem. H

An algebraic extension E/F is called separable if for any
o € E, my r(x) is a separable polynomial. Here is an example
of an algebraic extension which is not separable: let E := IF,,(t)
and F := F,(t?). Then t is a zero of xP — tP. Notice that
by Eisenstein’s criterion xP — tP € F[x] is irreducible; and so
mer(x) = xP — tP. Since the characteristic of E is p, we have
mer(x) = (x—1)P; and so it has multiple zeros in E. This implies
that E/F is not a separable extension. It is worth pointing out
that E is a splitting field of xP — tP over F as E is generated by F
and t (which is a zero of xP — tP). Hence E/F is a finite normal

extension which is not separable.
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