
Math200b, lecture 20

Golsefidy

Normal extensions.

In the previous lecture we were proving the following the-
orem:

Theorem 1 Suppose F is a field, F is an algebraic closure of F, and
F ⊆ E ⊆ F is a subfield. Then the following statements are equivalent.

1. For any σ ∈ Aut(F/F), σ(E) � E.

2. For any α ∈ E, there are αi ∈ E such that

mα,F(x) �
n∏
i�1

(x − αi).

3. There is a non-empty subset F of F[x] \ F such that E is a
splitting field of F over F.
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4. There is a family {Ei}i∈I of subfields of F, and a family of
polynomials {pi}i∈I ⊆ F[x] \ F such that

(a) Ei ⊆ F is a splitting field of pi(x).

(b) For any i, j ∈ I, there is k ∈ I such that Ei ∪ Ej ⊆ Ek.

(c) E �
⋃
i∈I Ei.

Proof. (Continue) (4)⇒(1). For any σ ∈ Aut(F/F) and any i ∈ I,
we have already proved that σ(Ei) � Ei; and so

σ(E) �
⋃
i∈I
σ(Ei) �

⋃
i∈I
Ei � E.

�

Theorem 2 Suppose F is an algebraic closure of F, F ⊆ E ⊆ F
is a subfield, and E/F is a normal extension. Then the restriction
map rE : Aut(F/F) → Aut(E/F), rE(σ) :� σ|E is a well-defined onto
group homomorphism, and ker rE � Aut(F/E); in particular we have
and Aut(F/E)E Aut(F/F) and

Aut(E/F) ' Aut(F/F)/Aut(F/E).

Proof. Since E/F is a normal extension, for any σ ∈ Aut(F/F)
σ(E) � E; and so rE(σ) ∈ Aut(E/F), which means rE is a well-
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defined function. It is easy to see that rE is a group homomor-
phism.

Notice that, since F ⊆ E ⊆ F, F is an algebraic closure of
E. And so any σ : E

∼−→ E can be extended to σ : F
∼−→ F; in

particular σ|F � σ|F � idF. Hence σ ∈ Aut(F/F) and rE(σ) � σ,
which means that rE is surjective.

By definition, it is clear that ker rE � Aut(F/E); and so by
the first isomorphism theorem we have

Aut(E/F) ' Aut(F/F)/Aut(F/E).

�

Theorem 3 Suppose F is an algebraic closure of F, F ⊆ E1 ⊆ E2 ⊆ F
are subfields, and E1/F and E2/F are normal extensions. Then the
restriction maps give us well-defined compatible onto group homo-
morphisms:

Aut(F/F) Aut(E2/F) Aut(E1/F);
rE2

rE1

rE2/E1

moreover ker rE2/E1 � Aut(E2/E1)E Aut(E2/F) and

Aut(E1/F) ' Aut(E2/F)/Aut(E2/E1).
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Similarly if E1 ⊆ E2 ⊆ E3 ⊆ F and Ei/F are normal extensions, then
rE3/E1 � rE2/E1 ◦ rE3/E2.

Proof. We have already proved that rEi are well-defined onto
group homomorphisms. By a similar argument rE2/E1 is a
well-defined group homomorphism. Since clearly we have
rE1 � rE2/E1 ◦ rE2, we deduce that rE2/E1 is onto. By definition
ker rE2/E1 � Aut(E2/E1); and so by the first isomorphism the-
orem we get the mentioned isomorphism. The last part of
Theorem is clear. �

Theorem 4 Suppose F is an algebraic closure of F, F ⊆ E ⊆ F is
a subfield, and E/F is a normal extension. Let F :� {E′| E′ ⊆
E,E′/F finite normal }. Then

r : Aut(E/F) → {(σE′) ∈
∏
E′∈F

Aut(E′/F)| rE′′/E′(σE′′) � σE′},

r(σ) :� (rE/E′(σ))E′∈F
is a group isomorphism.

The RHS in the display of the second part of the above theorem
is called the inverse limit of Aut(E′/F)’s and it is denoted by
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lim←−E′∈F Aut(E′/F). So we are showing that

Aut(E/F) ' lim←−
E′∈F

Aut(E′/F).

Before we get to the proof of Theorem 4wemake the following
observation:

Lemma 5 E/F is a finite normal extension if and only if E is a
splitting field of some p(x) ∈ F[x] \ F over F.

Proof of Lemma. (⇒) Since E/F is a finite extension, there are
αi’s in E such that E � F[α1, . . . ,αn]. Let p(x) :�

∏n
i�1mαi,F(x).

Since E/F is a normal extension, all the zeros of mαi,F(x)’s are
in E; and so all the zeros of p(x) are in E. As E is generated by
αi’s over F, we deduce that E is a splitting field of p(x) over F.

(⇐) Since E is a splitting of p(x), E/F is a normal extension,
and for some αi’s in E we have E � F[α1, . . . ,αn] and p(x) �∏n
i�1(x − αi). Hence αi’s are algebraic over F; and so

[E : F] �
n∏
i�1

[F[α1, . . . ,αi] : F[α1, . . . ,αi−1]] ≤
n∏
i�1

[F[αi] : F] < ∞.

�
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Proof of Theorem 4. Well-definedness. For any E′ ∈ F , rE/E′
is an onto group homomorphism; and so

r̂ : Aut(E/F) →
∏
E′∈F

r̂(σ) :� {rE/E′(σ)}E′∈F ,

is a group homomorphism. By Theorem 3 we get that r̂(σ) ∈
lim←−E′∈F Aut(E′/F); and so r is a well-defined group homomor-
phism.

Injectivity. Since E/F is a normal extension, there are Ei
such that Ei is a splitting field of a polynomial pi(x) ∈ F[x] over
F and E �

⋃
i∈I Ei. Hence E �

⋃
E′∈F E

′. Then for any α ∈ E
there is E′α ∈ F such that α ∈ E′α; so if σ ∈ ker r, then for any
α ∈ Ewe have

σ(α) � rE/E′α(σ)(α) � α,

which implies that σ � idE; and so r is injective.
Surjectivity. Suppose {σE′}E′∈F ∈ lim←−E′∈F Aut(E′/F). Let σ :

E→ E be σ(α) � σE0(α) if α ∈ E0 and E0 ∈ F . As we discussed
above E �

⋃
E′∈F E

′; and so for any α ∈ E there is E0 ∈ F
such that α ∈ E0. Next we show that σ(α) is independent of
the choice of E0; and so it is a well-defined function. Suppose
E0 and E1 are in F and α ∈ E0 ∩ E1. Then E0 is a splitting
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field of some p0(x) ∈ F[x] over F and E1 is a splitting field of
some p1(x) ∈ F[x] over F. Let E2 ⊆ E be a splitting field of
p0(x)p1(x) over F; notice that since E/F is a normal extension
and E0 ∪ E1 ⊆ E, there is such an E2. We have E0 ∪ E1 ⊆ E2.
Since {σE′}E′∈F ∈ lim←−E′∈F Aut(E′/F), we have rE2/E1(σE2) � σE1

and rE2/E0(σE2) � σE0. Hence

σE0(α) � rE2/E0(σE2)(α) � σE2(α) � rE2/E1(σE2)(α) � σE1(α).

For α1,α2 ∈ E \ {0}, there are Ei ∈ F such that αi ∈ Ei. By
the above argument, there is E3 ∈ F such that α1,α2 ∈ E3.
Hence α1 ± α2 ∈ E3 and α1α

±1
2 ∈ E3; and so σ(αi) � σE3(αi),

σ(α1±α2) � σE3(α1±α2), and σ(α1α
±1
2 ) � σE3(α1α

±1
2 ). Since σE3

is a homomorphism, we deduce that σ(α1±α2) � σ(α1)±σ(α2)
and σ(α1α

±1
2 ) � σ(α1)σ(α2)±1; and so σ is a homomorphism.

Since σ(1) � σF(1) � 1 and E is a field, σ is injective. Notice that

σ(E) � σ(
⋃
E′∈F

E′) �
⋃
E′∈F

σ(E′) �
⋃
E′∈F

σE′(E′) �
⋃
E′∈F

E′ � E;

and so σ is an automorphism of E. Since σ|F � σF ∈ Aut(F/F) �
{1}, we have that σ ∈ Aut(E/F). By definition of σ, we have
rE/E′(σ) � σE′ for any E′ ∈ F ; and so r(σ) � {σE′}E′∈F , which
implies that r is onto. �
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Remark. Wewill show thatAut(E′/F) is afinite group ifE′/F
is a finite normal extension; and so discrete topology makes
it a compact group. By Tychonoff’s theorem,

∏
E′∈F Aut(E′/F)

is a compact group. It is easy to check that lim←−E′∈F Aut(E′/F)
is a closed subgroup of

∏
E′∈F Aut(E′/F); and so the induced

product topology makes it a compact group. Therefore the
above isomorphism makes Aut(E/F) a compact group. This
topology on Aut(E/F) is called Krull topology.

Aut of finite normal extensions.

By Theorem 4 in principle understanding of an infinite nor-
mal extension can be reduced to understanding of finite nor-
mal extensions. So next we focus on such extensions.

Theorem 6 Suppose σ : F→ F′ is a field isomorphism. Suppose E
is a splitting field of f(x) ∈ F[x] over F and E′ is a splitting field of
σ(f) over F′. Then

|{σ̂ : E→ E′| σ̂ is an isomorphism , σ̂|F � σ}| ≤ [E : F];

and equality holds if and only if all the irreducible factors of f do not
have multiple zeros in E.
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Proof. Suppose f(x) � ∏m
i�1 fi(x)ni where fi(x) are distinct ir-

reducible polynomials in F[x]. We say that fsf(x) :�
∏m
i�1 fi(x)

is the square-free factor of f(x). First we observe that E is a
splitting field of f(x) over F if and only if it is a splitting field of
fsf(x) over F. We also observe that σ(fsf) � σ(f)sf. So W.L.O.G.
we can and will assume that f(x) is square-free.

Now we proceed by induction on the degree of f(x). Sup-
pose α is a zero of f1(x). Next we show that

|{σ : F[α] ↪→ E′| σ|F � σ}| � # of distinct zeros of f1(x) in E.

To prove this, it is enough to notice that

(1) σ is uniquely determined by its value at α;

(2) σ(α) is a zero of σ(f1);

(3) for any zero α′ ∈ E′ of σ(f1), there is a field isomorphism
σ : F[α] → F′[α′] such that σ|F � σ and σ(α) � α′;

(4) since there is an isomorphism σ̂ : E→ E′ such that σ̂|F �
σ, the number of distinct zeros of σ(f1) in E′ is equal to
the number of distinct zeros of f1 in E.
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For a given σ as above, we have f(x) � (x − α)h(x) and
σ(f) � σ(f) � (x−σ(α))σ(h) for some h(x) ∈ F[α][x]. We notice
that E is a splitting field of h(x) over F[α] and E′ is a splitting
field of σ(h) over σ(F[α]) (justify this). And so by the induction
hypothesis,

|{σ̂ : E→ E′| σ̂ is an isomorphism , σ̂|F[α] � σ}| ≤ [E : F[α]].

Let Isomσ(E,E′) :� {σ̂ : E→ E′| σ̂ is an isomorphism , σ̂|F � σ},
and Emσ(F[α],E′) :� {σ : F[α] ↪→ E′| σ|F � σ}. Consider the
restriction function

r : Isomσ(E,E′) → Emσ(F[α],E′).

Notice that any σ ∈ Emσ(F[α],E′) can be extended to an iso-
morphism from E to E′; this implies that r is onto. So we
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have

|Isomσ(E,E′)| �
∑

σ∈Emσ(F[α],E′)
|r−1(σ)|

≤
∑

σ∈Emσ(F[α],E′)
[E : F[α]]

�|Emσ(F[α],E′)|[E : F[α]]
�(# of distinct zeros of f1(x) in E)[E : F[α]]
≤(deg f1)[E : F[α]]
�[F[α] : F][E : F[α]] � [E : F].

Now we focus on exactly when equality holds. Suppose
equality holds. Then by the above argument, we have that

deg f1 � # of distinct zeros of f1(x) in E.

Therefore all zeros of f1 are distinct; by symmetry the same is
true for fi’s.

Next we assume that all the zeros of fi’s are distinct in E,
and by induction on deg f we prove that equality holds. Since
fi , fj are irreducible in F[x], gcd(fi, fj) � 1. This implies that
there are a,b ∈ F[x] such that a(x)fi(x) + b(x)fj(x) � 1. Hence
fi and fj do not have common factors in E[x]. Thus f(x) � fsf(x)
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is square-free in E[x]. And so all the irreducible factors of f(x)
in F[α][x] have distinct zeros in E. Hence by the induction
hypothesis in the above setting for any σ ∈ Emσ(F[α],E′) we
have |r−1(σ)| � |Isomσ(E,E′)| � [E : F[α]]. We also notice that

deg f1 � # of distinct zeros of f1(x) in E.

Hence we get

|Isomσ(E,E′)| �
∑

σ∈Emσ(F[α],E′)
|r−1(σ)|

�

∑
σ∈Emσ(F[α],E′)

[E : F[α]]

�|Emσ(F[α],E′)|[E : F[α]]
�(# of distinct zeros of f1(x) in E)[E : F[α]]
�(deg f1)[E : F[α]]
�[F[α] : F][E : F[α]] � [E : F];

and claim follows. �

A polynomial f(x) ∈ F[x] is called separable if all of its
irreducible factors have distinct zeros in a splitting field E of
f(x) over F.
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Theorem 7 Suppose E is a splitting field of f(x) ∈ F[x] over F.
Then

|Aut(E/F)| ≤ [E : F];

moreover equality holds if and only if f(x) is a separable polynomial.

Proof. Notice that Aut(E/F) � IsomidF(E,E); and claim follows
from the previous theorem. �

An algebraic extension E/F is called separable if for any
α ∈ E, mα,F(x) is a separable polynomial. Here is an example
of an algebraic extension which is not separable: let E :� �p(t)
and F :� �p(tp). Then t is a zero of xp − tp. Notice that
by Eisenstein’s criterion xp − tp ∈ F[x] is irreducible; and so
mt,F(x) � xp − tp. Since the characteristic of E is p, we have
mt,F(x) � (x−t)p; and so it hasmultiple zeros inE. This implies
that E/F is not a separable extension. It is worth pointing out
that E is a splitting field of xp − tp over F as E is generated by F
and t (which is a zero of xp − tp). Hence E/F is a finite normal
extension which is not separable.
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