Math200b, lecture 19

Golsefidy

Algebraic closure.

In the previous lecture we proved:

Theorem 1 *Suppose* F *is a field. Then there is a field extension* E/F *such that* E *is algebraically closed.*

Today first we prove:

Proposition 2 Suppose E/F is a field extension and E is algebraically closed. Let $L \subseteq E$ be the algebraic closure of F in E. Then L is algebraically closed.

Proof. Suppose $p(x) \in L[x] \setminus L$. Since E is algebraically closed, there is $\alpha \in E$ such that $p(\alpha) = 0$. Hence α is algebraic over L;

and so $L[\alpha]/L$ is algebraic. Since L/F is algebraic, we deduce that $L[\alpha]/F$ is algebraic. Hence α is in the algebraic closure L of F in E, which implies that $\alpha \in L$. Therefore p(x) has a zero in L, which implies that L is algebraically closed.

The following is an immediate corollary:

Theorem 3 *Suppose* F *is a field. Then there is an algebraic field extension* E/F *such that* E *is algebraically closed.*

E is called an algebraic closure of F if it satisfies properties of the previous theorem. Next we want to show that up to an isomorphism an algebraic closure is unique. We start with an important proposition.

Proposition 4 Suppose F is a field, Ω is algebraically closed and $\sigma : F \to \Omega$ is an embedding. Suppose $f(x) \in F[x] \setminus F$ and E is a splitting field of f(x) over F. Then there is $\tilde{\sigma} : E \to \Omega$ such that $\tilde{\sigma}|_F = \sigma$.

Proof. Since Ω is algebraically closed, there are α_i 's in Ω such that $\sigma(f) = \alpha_0 \prod_{i=1}^n (x - \alpha_i)$; notice that $\alpha_0 \in \sigma(F)$. Let $E' := \sigma(F)[\alpha_1, \ldots, \alpha_n] \subseteq \Omega$. Then it is easy to see that E' is a splitting

field of $\sigma(f)$ over $\sigma(F)$. Hence by a theorem that we have proved earlier, there is a field isomorphism $\tilde{\sigma} : E \to E'$ such that $\tilde{\sigma}|_F = \sigma$; and claim follows.

Proposition 5 Suppose F is a field, \overline{F} is an algebraic closure of F, Ω is algebraically closed, and $\sigma : F \to \Omega$ is an embedding. Then there is $\widetilde{\sigma} : \overline{F} \to \Omega$ such that $\widetilde{\sigma}|_{F} = \sigma$.

Proof. Let $\Sigma := \{(K, \theta) | F \subseteq K \subseteq \overline{F}, \theta : K \hookrightarrow \Omega, \theta|_F = \sigma\}$. We define a partial ordering on Σ : we say $(K_1, \theta_1) \leq (K_2, \theta_2)$ if $K_1 \subseteq K_2$ and $\theta_2|_{K_1} = \theta_1$. It is easy to see that (Σ, \leq) is a POSet.

Claim. Σ has a maximal element.

Proof of Claim. By Zorn's lemma it is enough to show that any chain $\{(K_i, \theta_i)\}_{i \in I}$ in Σ has an upper bound. Let $K := \bigcup_{i \in I} K_i$ and $\theta : K \to \Omega$, $\theta(k) = \theta_i(k)$ if $k \in K_i$.

Step 1. K is a subfield of \overline{F} .

Proof of Step 1. For any $\alpha, \beta \in K \setminus \{0\}$, there are $i_0, j_0 \in I$ such that $\alpha \in K_{i_0}$ and $\beta \in K_{j_0}$. Since $\{(K_i, \theta_i)\}_{i \in I}$ is a chain, either $(K_{i_0}, \theta_{i_0}) \leq (K_{j_0}, \theta_{j_0})$ or $(K_{j_0}, \theta_{j_0}) \leq (K_{i_0}, \theta_{i_0})$. W.L.O.G. we can and will assume that $(K_{i_0}, \theta_{i_0}) \leq (K_{j_0}, \theta_{j_0})$; and so $K_{i_0} \subseteq K_{j_0}$. Hence $\alpha, \beta \in K_{j_0}$; and so $\alpha \pm \beta, \alpha \beta^{\pm 1} \in K_{j_0}$. Therefore $\alpha \pm \beta, \alpha \beta^{\pm 1} \in K$; and so K is a subfield of \overline{F} .

Step 2. θ is well-defined.

Proof of Step 2. Suppose $k \in K_{i_0} \cap K_{j_0}$. Since Since $\{(K_i, \theta_i)\}_{i \in I}$ is a chain, either $(K_{i_0}, \theta_{i_0}) \leq (K_{j_0}, \theta_{j_0})$ or $(K_{j_0}, \theta_{j_0}) \leq (K_{i_0}, \theta_{i_0})$. W.L.O.G. we can and will assume that $(K_{i_0}, \theta_{i_0}) \leq (K_{j_0}, \theta_{j_0})$; and so $K_{i_0} \subseteq K_{j_0}$ and $\theta_{j_0}|_{K_{i_0}} = \theta_{i_0}$. Therefore $\theta_{j_0}(k) = \theta_{i_0}(k)$; and so θ is well-defined.

Step 3. θ : $K \rightarrow \Omega$ is a ring homomorphism.

Proof of Step 3. Suppose $\alpha, \beta \in K \setminus \{0\}$. By a similar argument as in Step 1, there is $i_0 \in I$ such that $\alpha, \beta \in K_{i_0}$. And so $\alpha \pm \beta, \alpha \beta^{\pm 1} \in K_{i_0}$. Hence $\theta(\alpha) = \theta_{i_0}(\alpha), \theta(\beta) = \theta_{i_0}(\beta), \theta(\alpha \pm \beta)$ $\beta = \theta_{i_0}(\alpha \pm \beta), \text{ and } \theta(\alpha \beta^{\pm 1}) = \theta_{i_0}(\alpha \beta^{\pm})$. Since θ_{i_0} is a ring homomorphism, we can deduce claim of Step 3.

Step 4. Finishing proof of Claim.

It is clear that $(K_i, \theta_i) \leq (K, \theta)$ for any $i \in I$; and so $(K, \theta) \in \Sigma$ is an upper bound for the chain $\{(K_i, \theta_i)\}_{i \in I}$; and claim follows.

Suppose (K, θ) is a maximal element. Next we prove that $K = \overline{F}$. Suppose to the contrary that $\alpha \in \overline{F} \setminus K$. Then α is a zero of $f(x) \in F[x] \setminus F$. Let E be the splitting field of f(x) over K. By the previous proposition, there is $\theta' : E \to \Omega$ such that

 $\theta'|_{K} = \theta$; and so $(K, \theta) \leq (E, \theta')$ and $K \subsetneq E$, which contradicts maximality of (K, θ) ; and claim follows.

Proposition 6 Suppose E is an algebraic closure of F, E' is an algebraic closure of F', and $\sigma : E \hookrightarrow E'$ is an embedding such that $\sigma(F) = F'$. Then σ is surjective.

Proof. Suppose to the contrary that there is $\alpha \in E' \setminus \sigma(E)$. Then α is algebraic over $F' \subseteq \sigma(E)$. Let $K \subseteq E'$ be a splitting field of the minimal polynomial of α over $\sigma(E)$. Then by a result that we have proved earlier, there is an embedding $\theta : K \to E$ such that $\theta|_{\sigma(E)} = \sigma^{-1}$. Then $\theta(\alpha) \in E = \theta(\sigma(E))$. Since θ is injective, we deduce that $\alpha \in \sigma(E)$, which is a contradiction.

Theorem 7 Suppose $\sigma : F \rightarrow F'$ is a field isomorphism, E is an algebraic closure of F, and E' is an algebraic closure F'. Then there is a field isomorphism $\tilde{\sigma} : E \rightarrow E'$ such that $\tilde{\sigma}|_F = \sigma$.

Proof. By Proposition 5, there is $\tilde{\sigma} : E \hookrightarrow E'$ such that $\tilde{\sigma}|_F = \sigma$. By Proposition 6, $\tilde{\sigma}$ is surjective and so it is an isomorphism; and claim follows.

Normal extensions.

A lot of mathematics is about understanding symmetries of the field extension \overline{F}/F where \overline{F} is an algebraic closure of F. For a field extension E/F, we let

$$\operatorname{Aut}(\mathsf{E}/\mathsf{F}) := \{ \sigma : \mathsf{E} \to \mathsf{E} | \sigma|_{\mathsf{F}} = \operatorname{id}_{\mathsf{F}} \}.$$

The following observation is the key in understanding $Aut(\overline{F}/F)$.

Lemma 8 Suppose $\sigma \in Aut(\overline{F}/F)$ and $\alpha \in \overline{F}$ is a zero of $f(x) \in F[x] \setminus F$. Then $\sigma(\alpha)$ is a zero of f(x); and so σ permutes zeros of f(x).

Proof. Suppose $f(x) = \sum_{i=0}^{n} f_i x^i$. Since α is a zero f, we have $\sum_{i=0}^{n} f_i \alpha^i = 0$; and so $\sigma(\sum_{i=0}^{n} f_i \alpha^i) = 0$. Therefore

$$0 = \sum_{i=0}^{n} \sigma(f_i) \sigma(\alpha)^i = \sum_{i=0}^{n} f_i \sigma(\alpha)^i,$$

which means that $\sigma(\alpha)$ is a zero of f(x). So σ sends zeros of f to zeros of f; and as σ is injective and the set of zeros of f is a finite set, we deduce that σ permutes zeros of f.

An immediate corollary of this observation is the following:

Lemma 9 Suppose \overline{F} is an algebraic closure of F and $f(x) \in F[x] \setminus F$. Suppose $E \subseteq \overline{F}$ is a splitting field of f(x) over F. Then for any $\sigma \in \operatorname{Aut}(\overline{F}/F)$ we have $\sigma(E) = E$.

Proof. By definition, there are $c \in F^{\times}$ and $\alpha_i \in E \subseteq \overline{F}$ such that $f(x) = c \prod_{i=1}^{n} (x - \alpha_i)$ and $E = F[\alpha_1, \dots, \alpha_n]$. By the previous lemma, for any $\sigma \in Aut(\overline{F}/F)$, we have that

$$\{\sigma(\alpha_1),\ldots,\sigma(\alpha_n)\}=\{\alpha_1,\ldots,\alpha_n\}.$$

And so $\sigma(E) = \sigma(F)[\sigma(\alpha_1), \dots, \sigma(\alpha_n)] = F[\alpha_1, \dots, \alpha_n] = E.$

In order to get a kind of converse of the above Lemma, we need to consider more general splitting fields:

suppose $\mathcal{F} \subseteq F[x] \setminus F$ is a non-empty subset. We say E is a splitting field of \mathcal{F} over F if there are $\alpha_{p,i} \in E$ for any $p \in \mathcal{F}$ such that

(a)
$$p(x) = c_p \prod_i (x - \alpha_{p,i})$$
 for some $c_p \in F^{\times}$, and

(b) $E = F[\alpha_{p,i} | p \in \mathcal{F}].$

Theorem 10 Suppose F is a field, \overline{F} is an algebraic closure of F, and $F \subseteq E \subseteq \overline{F}$ is a subfield. Then the following statements are equivalent.

- 1. For any $\sigma \in \operatorname{Aut}(\overline{F}/F)$, $\sigma(E) = E$.
- 2. For any $\alpha \in E$, there are $\alpha_i \in E$ such that

$$m_{\alpha,F}(x) = \prod_{i=1}^{n} (x - \alpha_i).$$

- 3. There is a non-empty subset \mathcal{F} of $F[x] \setminus F$ such that E is a splitting field of \mathcal{F} over F.
- 4. There is a family $\{E_i\}_{i \in I}$ of subfields of \overline{F} , and a family of polynomials $\{p_i\}_{i \in I} \subseteq F[x] \setminus F$ such that
 - (a) $E_i \subseteq \overline{F}$ is a splitting field of $p_i(x)$.
 - (b) For any $i, j \in I$, there is $k \in I$ such that $E_i \cup E_j \subseteq E_k$.
 - (c) $E = \bigcup_{i \in I} E_i$.

Proof. (1) \Rightarrow (2). Suppose $\alpha' \in \overline{F}$ is a zero of $\mathfrak{m}_{\alpha,F}(x)$. Then there is an isomorphism $\sigma : F[\alpha] \to F[\alpha']$ such that $\sigma|_F = \operatorname{id}_F$ and $\sigma(\alpha) = \alpha'$. Notice that \overline{F} is an algebraic closure of $F[\alpha]$ and also an algebraic closure of $F[\alpha']$. Hence by Theorem 7 there is an isomorphism $\widetilde{\sigma} : \overline{F} \to \overline{F}$ such that $\widetilde{\sigma}|_{F[\alpha]} = \sigma$; in particular, $\sigma|_F = \operatorname{id}_F$. This implies that $\widetilde{\sigma} \in \operatorname{Aut}(\overline{F}/F)$. Therefore by our assumption $\tilde{\sigma}(E) = E$. Since $\alpha \in E$, we deduce that $\tilde{\sigma}(\alpha) \in E$; and so $\alpha' = \sigma(\alpha) = \tilde{\sigma}(\alpha) \in E$. Thus all the zeros of $\mathfrak{m}_{\alpha,F}(x)$ are in E; and claim follows.

(2) \Rightarrow (3). Let $\mathcal{F} := \{m_{\alpha,F}(x) | \alpha \in E\}$. Then by our assumption, E is a splitting field of \mathcal{F} .

 $(3) \Rightarrow (4)$. Let I be the set of all the finite subsets of \mathcal{F} . For $i \in I$, let $p_i(x) = \prod_{p \in i} p$, and $E_i \subseteq \overline{F}$ be a splitting field of $p_i(x)$ over F. For $i, j \in I$, $k := i \cup j$ is also a finite subset of \mathcal{F} ; and it is easy to see that $E_i \cup E_j \subseteq E_k$. Let $E' := \bigcup_{i \in I} E_i$.

Claim. E' is a subfield of \overline{F} .

Proof of claim. For $\alpha, \beta \in E' \setminus \{0\}$, there are $i, j \in I$ such that $\alpha \in E_i$ and $\beta \in E_j$. We know that there is $k \in I$ such that $E_i \cup E_j \subseteq E_k$. Hence $\alpha, \beta \in E_k$. Therefore $\alpha \pm \beta, \alpha\beta^{\pm 1} \in E_k$; and so $\alpha \pm \beta, \alpha\beta^{\pm 1} \in E$. And claim follows. \Box

It is clear that $E' \subseteq E$. On the other hand, E is generated by F and all the zeros of polynomials in \mathcal{F} ; and E' contains F as a subfield and all the zeros of polynomials in \mathcal{F} . Hence $E \subseteq E'$. Altogether we deduce that E' = E.

 $(4) \Rightarrow (1)$ will be proved in the next lecture.

We say E/F is a normal extension if, for some algebraic

closure \overline{F} of $F, E \subseteq \overline{F}$ satisfies the above properties (in particular E/F is an algebraic extension).