
Math200b, lecture 19

Golsefidy

Algebraic closure.

In the previous lecture we proved:

Theorem 1 Suppose F is a field. Then there is a field extension E/F
such that E is algebraically closed.

Today first we prove:

Proposition 2 Suppose E/F is a field extension and E is alge-
braically closed. Let L ⊆ E be the algebraic closure of F in E. Then L

is algebraically closed.

Proof. Suppose p(x) ∈ L[x] \ L. Since E is algebraically closed,
there is α ∈ E such that p(α) 󳓬 0. Hence α is algebraic over L;
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and so L[α]/L is algebraic. Since L/F is algebraic, we deduce
that L[α]/F is algebraic. Hence α is in the algebraic closure L

of F in E, which implies that α ∈ L. Therefore p(x) has a zero
in L, which implies that L is algebraically closed. 󰃈

The following is an immediate corollary:

Theorem 3 Suppose F is a field. Then there is an algebraic field
extension E/F such that E is algebraically closed.

E is called an algebraic closure of F if it satisfies properties of
the previous theorem. Next we want to show that up to an
isomorphism an algebraic closure is unique. We start with an
important proposition.

Proposition 4 Suppose F is a field, Ω is algebraically closed and
σ : F → Ω is an embedding. Suppose f(x) ∈ F[x] \ F and E is a
splitting field of f(x) over F. Then there is 󰁨σ : E → Ω such that
󰁨σ|F 󳓬 σ.

Proof. Since Ω is algebraically closed, there are αi’s in Ω such
that σ(f) 󳓬 α0

󳕑n
i󳓬1(x − αi); notice that α0 ∈ σ(F). Let E′ :󳓬

σ(F)[α1, . . . ,αn] ⊆ Ω. Then it is easy to see that E′ is a splitting
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field of σ(f) over σ(F). Hence by a theorem that we have
proved earlier, there is a field isomorphism 󰁨σ : E → E′ such
that 󰁨σ|F 󳓬 σ; and claim follows. 󰃈

Proposition 5 Suppose F is a field, F is an algebraic closure of F, Ω
is algebraically closed, and σ : F → Ω is an embedding. Then there
is 󰁨σ : F → Ω such that 󰁨σ|F 󳓬 σ.

Proof. Let Σ :󳓬 {(K, θ)| F ⊆ K ⊆ F, θ : K ↩→ Ω, θ|F 󳓬 σ}. We
define a partial ordering on Σ: we say (K1, θ1) ≼ (K2, θ2) if
K1 ⊆ K2 and θ2 |K1 󳓬 θ1. It is easy to see that (Σ,≼) is a POSet.

Claim. Σ has a maximal element.
Proof of Claim. By Zorn’s lemma it is enough to show that

any chain {(Ki, θi)}i∈I inΣhas an upper bound. LetK :󳓬
󳕒

i∈IKi

and θ : K → Ω, θ(k) 󳓬 θi(k) if k ∈ Ki.
Step 1. K is a subfield of F.
Proof of Step 1. For any α,β ∈ K \ {0}, there are i0, j0 ∈ I

such that α ∈ Ki0 and β ∈ Kj0. Since {(Ki, θi)}i∈I is a chain,
either (Ki0, θi0) ≼ (Kj0, θj0) or (Kj0, θj0) ≼ (Ki0, θi0). W.L.O.G. we
can and will assume that (Ki0, θi0) ≼ (Kj0, θj0); and so Ki0 ⊆
Kj0. Hence α,β ∈ Kj0; and so α ± β,αβ±1 ∈ Kj0. Therefore
α ± β,αβ±1 ∈ K; and so K is a subfield of F.
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Step 2. θ is well-defined.
Proof of Step 2. Suppose k ∈ Ki0∩Kj0. Since Since {(Ki, θi)}i∈I

is a chain, either (Ki0, θi0) ≼ (Kj0, θj0) or (Kj0, θj0) ≼ (Ki0, θi0).
W.L.O.G. we can and will assume that (Ki0, θi0) ≼ (Kj0, θj0);
and so Ki0 ⊆ Kj0 and θj0 |Ki0

󳓬 θi0. Therefore θj0(k) 󳓬 θi0(k); and
so θ is well-defined.

Step 3. θ : K → Ω is a ring homomorphism.
Proof of Step 3. Supposeα,β ∈ K\{0}. By a similar argument

as in Step 1, there is i0 ∈ I such that α,β ∈ Ki0. And so
α ± β,αβ±1 ∈ Ki0. Hence θ(α) 󳓬 θi0(α), θ(β) 󳓬 θi0(β), θ(α ±
β) 󳓬 θi0(α ± β), and θ(αβ±1) 󳓬 θi0(αβ±). Since θi0 is a ring
homomorphism, we can deduce claim of Step 3.

Step 4. Finishing proof of Claim.
It is clear that (Ki, θi) ≼ (K, θ) for any i ∈ I; and so (K, θ) ∈

Σ is an upper bound for the chain {(Ki, θi)}i∈I; and claim
follows.□

Suppose (K, θ) is a maximal element. Next we prove that
K 󳓬 F. Suppose to the contrary that α ∈ F \ K. Then α is a
zero of f(x) ∈ F[x] \ F. Let E be the splitting field of f(x) over
K. By the previous proposition, there is θ′ : E → Ω such that
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θ′|K 󳓬 θ; and so (K, θ) ≼ (E, θ′) and K ⊊ E, which contradicts
maximality of (K, θ); and claim follows. 󰃈

Proposition 6 Suppose E is an algebraic closure of F, E′ is an al-
gebraic closure of F′, and σ : E ↩→ E′ is an embedding such that
σ(F) 󳓬 F′. Then σ is surjective.

Proof. Suppose to the contrary that there is α ∈ E′ \σ(E). Then
α is algebraic over F′ ⊆ σ(E). Let K ⊆ E′ be a splitting field of
the minimal polynomial of α over σ(E). Then by a result that
we have proved earlier, there is an embedding θ : K → E such
that θ|σ(E) 󳓬 σ−1. Then θ(α) ∈ E 󳓬 θ(σ(E)). Since θ is injective,
we deduce that α ∈ σ(E), which is a contradiction. 󰃈

Theorem 7 Suppose σ : F → F′ is a field isomorphism, E is an
algebraic closure of F, and E′ is an algebraic closure F′. Then there is
a field isomorphism 󰁨σ : E → E′ such that 󰁨σ|F 󳓬 σ.

Proof. By Proposition 5, there is 󰁨σ : E ↩→ E′ such that 󰁨σ|F 󳓬 σ.
By Proposition 6, 󰁨σ is surjective and so it is an isomorphism;
and claim follows. 󰃈

5



Normal extensions.

A lot of mathematics is about understanding symmetries
of the field extension F/F where F is an algebraic closure of F.
For a field extension E/F, we let

Aut(E/F) :󳓬 {σ : E → E| σ|F 󳓬 idF}.

The following observation is the key in understanding Aut(F/F).

Lemma 8 Suppose σ ∈ Aut(F/F) and α ∈ F is a zero of f(x) ∈
F[x] \F . Then σ(α) is a zero of f(x); and so σ permutes zeros of f(x).

Proof. Suppose f(x) 󳓬 󳕐n
i󳓬0 fix

i. Since α is a zero f, we have󳕐n
i󳓬0 fiα

i 󳓬 0; and so σ(󳕐n
i󳓬0 fiα

i) 󳓬 0. Therefore

0 󳓬

n󳕗
i󳓬0

σ(fi)σ(α)i 󳓬
n󳕗
i󳓬0

fiσ(α)i,

which means that σ(α) is a zero of f(x). So σ sends zeros of f
to zeros of f; and as σ is injective and the set of zeros of f is a
finite set, we deduce that σ permutes zeros of f. 󰃈

An immediate corollary of this observation is the following:
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Lemma 9 Suppose F is an algebraic closure of F and f(x) ∈ F[x] \F.
Suppose E ⊆ F is a splitting field of f(x) over F. Then for any
σ ∈ Aut(F/F) we have σ(E) 󳓬 E.

Proof. By definition, there are c ∈ F× and αi ∈ E ⊆ F such that
f(x) 󳓬 c

󳕑n
i󳓬1(x − αi) and E 󳓬 F[α1, . . . ,αn]. By the previous

lemma, for any σ ∈ Aut(F/F), we have that

{σ(α1), . . . ,σ(αn)} 󳓬 {α1, . . . ,αn}.

And so σ(E) 󳓬 σ(F)[σ(α1), . . . ,σ(αn)] 󳓬 F[α1, . . . ,αn] 󳓬 E. 󰃈
In order to get a kind of converse of the above Lemma, we

need to consider more general splitting fields:
suppose F ⊆ F[x] \ F is a non-empty subset. We say E is a

splitting field of F over F if there are αp,i ∈ E for any p ∈ F
such that

(a) p(x) 󳓬 cp
󳕑

i(x − αp,i) for some cp ∈ F×, and

(b) E 󳓬 F[αp,i | p ∈ F ].

Theorem 10 Suppose F is a field, F is an algebraic closure of F,
and F ⊆ E ⊆ F is a subfield. Then the following statements are
equivalent.
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1. For any σ ∈ Aut(F/F), σ(E) 󳓬 E.

2. For any α ∈ E, there are αi ∈ E such that

mα,F(x) 󳓬
n󳕘
i󳓬1

(x − αi).

3. There is a non-empty subset F of F[x] \ F such that E is a
splitting field of F over F.

4. There is a family {Ei}i∈I of subfields of F, and a family of
polynomials {pi}i∈I ⊆ F[x] \ F such that

(a) Ei ⊆ F is a splitting field of pi(x).

(b) For any i, j ∈ I, there is k ∈ I such that Ei ∪ Ej ⊆ Ek.

(c) E 󳓬
󳕒

i∈I Ei.

Proof. (1)⇒(2). Suppose α′ ∈ F is a zero of mα,F(x). Then there
is an isomorphism σ : F[α] → F[α′] such that σ|F 󳓬 idF and
σ(α) 󳓬 α′. Notice that F is an algebraic closure of F[α] and
also an algebraic closure of F[α′]. Hence by Theorem 7 there
is an isomorphism󰁨σ : F → F such that󰁨σ|F[α] 󳓬 σ; in particular,
σ|F 󳓬 idF. This implies that 󰁨σ ∈ Aut(F/F). Therefore by our
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assumption 󰁨σ(E) 󳓬 E. Since α ∈ E, we deduce that 󰁨σ(α) ∈ E;
and so α′ 󳓬 σ(α) 󳓬 󰁨σ(α) ∈ E. Thus all the zeros of mα,F(x) are
in E; and claim follows.

(2)⇒ (3). Let F :󳓬 {mα,F(x)|α ∈ E}. Then by our assump-
tion, E is a splitting field of F .

(3)⇒ (4). Let I be the set of all the finite subsets of F . For
i ∈ I, let pi(x) 󳓬

󳕑
p∈i p, and Ei ⊆ F be a splitting field of pi(x)

over F. For i, j ∈ I, k :󳓬 i ∪ j is also a finite subset of F ; and it
is easy to see that Ei ∪ Ej ⊆ Ek. Let E′ :󳓬

󳕒
i∈I Ei.

Claim. E′ is a subfield of F.
Proof of claim. For α,β ∈ E′ \ {0}, there are i, j ∈ I such

that α ∈ Ei and β ∈ Ej. We know that there is k ∈ I such that
Ei∪Ej ⊆ Ek. Hence α,β ∈ Ek. Therefore α±β,αβ±1 ∈ Ek; and
so α ± β,αβ±1 ∈ E. And claim follows. □

It is clear that E′ ⊆ E. On the other hand, E is generated by
F and all the zeros of polynomials in F ; and E′ contains F as a
subfield and all the zeros of polynomials in F . Hence E ⊆ E′.
Altogether we deduce that E′ 󳓬 E.

(4)⇒ (1) will be proved in the next lecture. 󰃈
We say E/F is a normal extension if, for some algebraic
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closure F of F, E ⊆ F satisfies the above properties (in particular
E/F is an algebraic extension).
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