Math200b, lecture 19

Golsefidy

Algebraic closure.

In the previous lecture we proved:

Theorem 1 Suppose F is a field. Then there is a field extension E/F
such that E is algebraically closed.

Today first we prove:

Proposition 2 Suppose E/F is a field extension and E is alge-
braically closed. Let L C E be the algebraic closure of F in E. Then L

is algebraically closed.

Proof. Suppose p(x) € L[x] \ L. Since E is algebraically closed,

there is « € E such that p(x) = 0. Hence « is algebraic over L;
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and so L[«]/L is algebraic. Since L/F is algebraic, we deduce
that L[«x]/F is algebraic. Hence « is in the algebraic closure L
of Fin E, which implies that « € L. Therefore p(x) has a zero
in L, which implies that L is algebraically closed. |

The following is an immediate corollary:

Theorem 3 Suppose F is a field. Then there is an algebraic field
extension E/F such that E is algebraically closed.

E is called an algebraic closure of F if it satisfies properties of
the previous theorem. Next we want to show that up to an
isomorphism an algebraic closure is unique. We start with an

important proposition.

Proposition 4 Suppose F is a field, Q) is algebraically closed and
o : F — Q is an embedding. Suppose f(x) € F[x] \ Fand E is a
splitting field of f(x) over F. Then there is o : E — Q such that

Eh: = 0.

Proof. Since () is algebraically closed, there are «;’s in O such
that o(f) = o [[iL,(x — ®;); notice that «y € o(F). Let £/ :=
o(F)[ay, ..., an] € Q. Thenitis easy to see that E’ is a splitting
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field of o(f) over o(F). Hence by a theorem that we have
proved earlier, there is a field isomorphism o : E — E’ such

that 0| = 0; and claim follows. |

Proposition 5 Suppose F is a field, F is an algebraic closure of F, Q
is algebraically closed, and o : F — Q) is an embedding. Then there

iso: F — Q such that olf = o.

Proof. Let £ := {(K,0))FC K CF,0:K = Q0 = 0}. We
define a partial ordering on X: we say (K, 0;) < (Kg,09) if
Ky € Ko and 69|k, = 6. It is easy to see that (X, <) is a POSet.

Claim. X has a maximal element.

Proof of Claim. By Zorn’s lemma it is enough to show that
any chain {(Kj, ;) }ic1 in Z hasan upperbound. LetK := [ ;1 Ki
and 0 : K — Q,0(k) = 0;(k) if k € K.

Step 1. K is a subfield of F.

Proof of Step 1. For any «, 3 € K\ {0}, there are 1y,jy € I
such that « € Ki, and 3 € K;j,. Since {(Kj, 0;)}ier is a chain,
either (Ky,, 0;,) < (Kj,, 0;,) or (Kj,, 65,) < (K, 03,). W.L.O.G. we
can and will assume that (K, 0;) < (Kj,,65,); and so K;, C
Kj,- Hence o, € Kj,; and so o + B, ap*! € K;j,. Therefore
o+ B, af*! € K; and so K is a subfield of F.
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Step 2. 0 is well-defined.

Proof of Step 2. Suppose k € Ki,NK;,. Since Since {(Kj, 03) }ier
is a chain, either (K;,, 0;,) < (Kj,,0;,) or (Kj,,05,) < (Kj,, 05,).
W.L.O.G. we can and will assume that (K;,, 0;,) < (Kj,, 65,);
and so Ky, € Kj; and 0j ¢, = 0;,. Therefore 0;,(k) = 0;,(k); and
so 0 is well-defined.

Step 3. 0 : K — Q) is a ring homomorphism.

Proof of Step 3. Suppose «, 3 € K\{0}. By asimilar argument
as in Step 1, there is iy € I such that o, € K;,. And so
o+ B, ap*! € Ki,. Hence 08(x) = 0;,(cx), 0(B) = 0i,(B), O(x
B) = Bi,(x £ B), and O(axf*') = 6;(xf*). Since 0, is a ring
homomorphism, we can deduce claim of Step 3.

Step 4. Finishing proof of Claim.

It is clear that (Ki, 0;) < (K, 0) for any i € I; and so (K, 0) €
Y is an upper bound for the chain {(Ki, 0i)}ic;; and claim
follows.U]

Suppose (K, 0) is a maximal element. Next we prove that
K = F. Suppose to the contrary that « € F\ K. Then o is a
zero of f(x) € F[x]| \ F. Let E be the splitting field of f(x) over
K. By the previous proposition, there is 0" : E — () such that



0’|k = 6; and so (K,0) < (E,0’) and K C E, which contradicts

maximality of (K, 0); and claim follows. H

Proposition 6 Suppose E is an algebraic closure of F, £/ is an al-
gebraic closure of ¥/, and o : E — E’ is an embedding such that

o(F) = V. Then o is surjective.

Proof. Suppose to the contrary that there is « € £\ o(E). Then
o is algebraic over F € o(E). Let K C E’ be a splitting field of
the minimal polynomial of « over o(E). Then by a result that
we have proved earlier, there is an embedding 0 : K — E such
that 0],g) = 0~'. Then 6(«) € E = 0(0(E)). Since 6 is injective,

we deduce that « € o(E), which is a contradiction. H

Theorem 7 Suppose o : F — V is a field isomorphism, E is an
algebraic closure of F, and ¥’ is an algebraic closure V. Then there is

a field isomorphism © : E — ' such that o|r = o.

Proof. By Proposition 5, there is ¢ : E < E’ such that off = o.
By Proposition 6, o is surjective and so it is an isomorphism;

and claim follows. H



Normal extensions.

A lot of mathematics is about understanding symmetries
of the field extension F/F where F is an algebraic closure of F.

For a field extension E/F, we let
Aut(E/F) :={o: E — E| o = id¢}.
The following observation is the key in understanding Aut(F/F).

Lemma 8 Suppose o € Aut(F/F) and o« € F is a zero of f(x) €

FIx]\ F. Then o(x) is a zero of f(x); and so o permutes zeros of f(x).

Proof. Suppose f(x) = >, fix'. Since « is a zero f, we have

>, fict = 0; and so o(Y -, fiett) = 0. Therefore

0= Z O‘(fi)CT(OC)i = i fio—((x)ia

n

1=0 i=0
which means that o(«x) is a zero of f(x). So o sends zeros of f
to zeros of f; and as o is injective and the set of zeros of f is a
finite set, we deduce that o permutes zeros of f. |

Animmediate corollary of this observation is the following:



Lemma 9 Suppose F is an algebraic closure of F and f(x) € F[x] \F.
Suppose E C F is a splitting field of f(x) over F. Then for any
o € Aut(F/F) we have o(E) = E.

Proof. By definition, there are c € F* and «; € E C F such that
f(x) = ¢[[iL;(x — a;) and E = Flay, ..., on]. By the previous
lemma, for any o € Aut(F/F), we have that

{o(x1),...,0(cn)} = {1, ..., an}.

And so o(E) = o(F)[o(q),...,0(on)] = Fletq,...,n] =E. W
In order to get a kind of converse of the above Lemma, we
need to consider more general splitting fields:
suppose ¥ C F[x] \ Fis a non-empty subset. We say E is a
splitting field of F over F if there are «,; € E forany p €
such that

(@) p(x) = cp [i(x — &p 1) for some ¢, € F*, and
(b) E=Flopilp e 71

Theorem 10 Suppose F is a field, F is an algebraic closure of F,
and F C E C Fis a subfield. Then the following statements are

equivalent.



1. Forany o € Aut(F/F), o(E) = E.

2. Forany « € E, there are «; € E such that

n

mar(x) = | [6c- o)

i=1

3. There is a non-empty subset ¥ of F[x| \ F such that E is a
splitting field of F over F.

4. There is a family {E;}ic1 of subfields of F, and a family of
polynomials {pi}ie1 € F[x] \ F such that

(a) Ei C Fis a splitting field of pi(x).
(b) Foranyi,j €1, there is k € I such that E; U E; C Ey.
(c) E=Uier i

Proof. (1)=(2). Suppose o’ € Fis a zero of my r(x). Then there
is an isomorphism o : Fla] — F[«] such that o|f = idf and
o(or) = of. Notice that F is an algebraic closure of F[«] and
also an algebraic closure of F[«’]. Hence by Theorem 7 there
is an isomorphism 6 : F — T such that Gl = 0; in particular,
olf = idr. This implies that ¢ € Aut(F/F). Therefore by our
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assumption o(E) = E. Since « € E, we deduce that o(x) € E;
and so «’ = o(«) = 0(x) € E. Thus all the zeros of m, r(x) are
in E; and claim follows.

(2)= (3). Let ¥ := {myr(x)|x € E}. Then by our assump-
tion, E is a splitting field of .

(3)= (4). Let I be the set of all the finite subsets of ¥ . For
i€l letpi(x) = [[peip,and E; C F be a splitting field of p;(x)
over F. Fori,j € I, k :=1Ujis also a finite subset of ¥ ; and it
is easy to see that E; U E; C Ey. Let E' := (¢ Ei.

Claim. E’ is a subfield of F.

Proof of claim. For «,3 € E’\ {0}, there are i,j € I such
that « € E; and 3 € E;. We know that there is k € I such that
EiUE; C Ex. Hence «, B € Ey. Therefore o + 3, a3 *! € Ey; and
so x + 3, ! € E. And claim follows. O

It is clear that E” C E. On the other hand, E is generated by
F and all the zeros of polynomials in #; and E’ contains F as a
subfield and all the zeros of polynomials in #. Hence E C E’.
Altogether we deduce that E’ = E.

(4)= (1) will be proved in the next lecture. |

We say E/F is a normal extension if, for some algebraic



closure Fof F, E C F satisfies the above properties (in particular

E/F is an algebraic extension).
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