Math200b, lecture 18

Golsefidy

Finite fields

In the previous lecture we proved that a finite field F has order p^{d} for some prime p and positive integer d. And we have $x^{\mathrm{p}^{\mathrm{d}}}-x=\prod_{\alpha \in \mathrm{F}}(x-\alpha)$. Now we want to prove the existence and uniqueness of a field of order p^{d}.

Theorem 1 Suppose p is a prime p and d is a positive integer. Then there is a unique, up to an isomorphism, field of order p^{d}.

We denote a field of order p^{d} by $\mathbb{F}_{p^{d}}$; in particular we let $\mathbb{F}_{\mathfrak{p}}:=\mathbb{Z} / \mathrm{p} \mathbb{Z}$.

Proof. Let E be a splitting field of $\chi^{\mathrm{p}^{\mathrm{d}}}-\chi$ over \mathbb{F}_{p}. And let

$$
X:=\left\{\alpha \in E \mid \alpha^{\mathrm{p}^{\mathrm{d}}}=\alpha\right\}
$$

We prove that X is a subfield of E.
$\mathbb{F}_{p} \subseteq X$. By Fermat's little theorem, $a^{p}=a$ for any $a \in \mathbb{F}_{p} ;$ and so $\mathbb{F}_{p} \subseteq X$.

Closed under addition. Notice that E is of characteristic p. And so $(x+y)^{p^{d}}=x^{p^{d}}+y^{p^{d}}$ for any $x, y \in E$. Hence

$$
\alpha, \alpha^{\prime} \in X \Rightarrow\left(\alpha+\alpha^{\prime}\right)^{\mathrm{p}^{\mathrm{d}}}=\alpha^{\mathrm{p}^{\mathrm{d}}}+\alpha^{\prime \mathrm{p}^{\mathrm{d}}}=\alpha+\alpha^{\prime} \Rightarrow \alpha+\alpha^{\prime} \in \mathrm{X}
$$

Closed under negation. Notice if p is odd, $(-1)^{p^{d}}=-1$. If $p=2,-1=1$ in E . Hence

$$
\alpha \in X \Rightarrow(-\alpha)^{\mathrm{p}^{\mathrm{d}}}=(-1)^{\mathrm{p}^{\mathrm{d}}} \alpha^{\mathrm{p}^{\mathrm{d}}}=-\alpha \Rightarrow-\alpha \in X .
$$

Closed under multiplication.

$$
\alpha, \alpha^{\prime} \in X \Rightarrow\left(\alpha \alpha^{\prime}\right)^{\mathrm{p}^{\mathrm{d}}}=\alpha^{\mathrm{p}^{\mathrm{d}}} \alpha^{\prime \mathrm{p}^{\mathrm{d}}}=\alpha \alpha^{\prime} \Rightarrow \alpha \alpha^{\prime} \in X
$$

Closed under taking inverse.

$$
\alpha \in X \backslash\{0\} \Rightarrow\left(\alpha^{-1}\right)^{\mathrm{p}^{\mathrm{d}}}=\left(\alpha^{\mathrm{p}^{\mathrm{d}}}\right)^{-1}=\alpha^{-1} \Rightarrow \alpha^{-1} \in X
$$

Since E is generated by zeros of $x^{p^{d}}-x$ and \mathbb{F}_{p}, by the above results we deduce that $E=X$.
$|E|=p^{d}$. We have already proved that E consists of zeros of $x^{p^{d}}-\chi ;$ and so $|E| \leq p^{d}$. It is enough to show that $\chi^{p^{d}}-x$ does not
have multiple roots in E. If it does, then $x^{p^{d}}-x=(x-\beta)^{2} q(x)$ for some $\beta \in E$ and $q(x) \in E[x]$. Let's take the formal derivative of both sides;
$\left(p^{d}\right) x^{p^{d}-1}-1=2(x-\beta) q(x)+(x-\beta)^{2} q^{\prime}(x) \Rightarrow(x-\beta) h(x)=-1$,
for some $h(x) \in E[x]$, which is a contradiction. This shows the existence of a finite field of order p^{d}.

On the other hand, if F is a field of order p^{d}, then its characteristic should be a prime divisor of p^{d}; and so it is p. This implies that $\mathbb{F}_{p}=\mathbb{Z} / p \mathbb{Z}$ is a subfield of F. We also know that $x^{\mathrm{p}^{\mathrm{d}}}-x=\prod_{\alpha \in \mathrm{F}}(x-\alpha)$ in $\mathrm{F}[x]$; and so F is a splitting field of $x^{p^{d}}-x$ over \mathbb{F}_{p}; and so up to an isomorphism is unique.

Algebraic extensions.

Lemma 2 (Tower lemma) Suppose E / F and K / E are finite field extensions. Then K / F is a finite field extension and $[\mathrm{K}: \mathrm{F}]=[\mathrm{K}$: E][E:F].

Proof. Suppose $\left\{e_{1}, \ldots, e_{m}\right\}$ is an F-basis of E and $\left\{k_{1}, \ldots, k_{n}\right\}$ is an E-basis of K. We show that $\left\{e_{i} k_{j} \mid 1 \leq \mathfrak{i} \leq m, 1 \leq \mathfrak{j} \leq \mathfrak{n}\right\}$ is an F-basis of K.

Independence. Suppose $\sum_{i, j} f_{i j} e_{i} k_{j}=0$ for some $f_{i j} \in F$. Then $\sum_{i} f_{i j} e_{i} \in E$ and $\sum_{j}\left(\sum_{i} f_{i j} e_{i}\right) k_{j}$. As k_{j} 's are E-linearly independent, we deduce that $\sum_{i} f_{i j} e_{i}=0$ for any j. As e_{i} 's are F-linearly independent, we get that $f_{i j}=0$ for any i and j.

Span. Since the E-span of k_{j} 's is K, there are c_{i} 's in E, for any $k \in K$ there are c_{j} 's in E such that $k=\sum_{j} c_{j} k_{j}$. Since E is the F-span of e_{i} 's, there are $f_{i j}$'s in F such that $c_{j}=\sum_{i} f_{i j} e_{i}$. Hence $k=\sum_{j}\left(\sum_{i} f_{i j} e_{i}\right) k_{j}=\sum_{i, j} f_{i j} e_{i} k_{j}$; and claim follows.

Notice that if $[\mathrm{K}: \mathrm{F}]<\infty$, then clearly $[\mathrm{K}: \mathrm{E}]<\infty$ and $[E: F]<\infty$; and so we get:

Lemma 3 Suppose E/F and K/E are field extensions. Then

$$
E / F \text { and } K / E \text { are finite } \Leftrightarrow K / F \text { is finite. }
$$

These are the type of field extension properties that we like the most.

We say E / F is an algebraic extension if any $\alpha \in E$ is algebraic over F.

Lemma 4 Suppose E / F is a finite field extension. Then E / F is an algebraic field extension.

Proof. For any $\alpha \in E$, the set $\left\{1, \alpha, \alpha^{2}, \ldots\right\}$ is F-linearly dependent as otherwise $[E: F]=\infty$. Hence there are $f_{0}, \ldots, f_{n} \in F$ such that $f_{n} \neq 0$ and $f_{0}+f_{1} \alpha+\cdots+f_{n} \alpha^{n}=0$. Hence α is a zero of $p(x):=\sum_{i=0}^{n} f_{i} x^{i} \in F[x] \backslash F$; and claim follows.

Lemma 5 Suppose E / F is a field extension. If $\alpha, \beta \in \mathrm{E} \backslash\{0\}$ are algebraic over F, then $\alpha \pm \beta, \alpha \beta^{ \pm 1}$ are algebraic over F.

Proof. Since α is algebraic over $\mathrm{F},[\mathrm{F}[\alpha]: \mathrm{F}]=\operatorname{deg} \mathrm{m}_{\alpha, \mathrm{F}}<\infty$. Since β is algebraic over F, it is algebraic over $F[\alpha]$; and so $[F[\alpha, \beta]: F[\alpha]]<\infty$. Since $F[\alpha, \beta] / F[\alpha]$ and $F[\alpha] / F$ are finite extensions, $F[\alpha, \beta] / F$ is a finite extension. Therefore it is an algebraic extension, and so $\alpha \pm \beta$ and $\alpha \beta^{ \pm 1}$ are algebraic over F.

Proposition 6 Suppose E/F is a field extension. Let

$$
\mathrm{K}:=\{\alpha \in \mathrm{E} \mid \alpha \text { is algebraic over } \mathrm{F}\} .
$$

Then K is a subfield of E and K / F is an algebraic extension. K is called the algebraic closure of F in E .

Proof. By the previous Lemma, K is a subfield of E. Notice that for any $a \in F, a$ is a zero of $x-a \in F[x]$; and so $F \subseteq K$.

Theorem 7 Suppose E/F and K/E are algebraic field extensions. Then Then K / F is an algebraic field extension.

Proof. Suppose $\alpha \in K$. Since K / E is algebraic, α is a zero of a polynomial $\sum_{i=0}^{n} e_{i} x^{i} \in E[x] \backslash E$. Since E / F is algebraic, e_{i} 's are algebraic over F. Hence $F\left[e_{0}\right] / F, F\left[e_{0}, e_{1}\right] / F\left[e_{0}\right], \ldots$, $\mathrm{F}\left[e_{0}, \ldots, e_{n}\right] / \mathrm{F}\left[e_{0}, \ldots, e_{\mathrm{n}-1}\right]$ are finite field extensions. Thus $\mathrm{F}\left[e_{0}, \ldots, e_{n}\right] / \mathrm{F}$ is a finite field extension. Since α is a zero of $\sum_{i=0}^{n} e_{i} x^{i}, \alpha$ is algebraic over $F\left[e_{0}, \ldots, e_{n}\right]$. Therefore

$$
\mathrm{F}\left[e_{0}, \ldots, e_{n}, \alpha\right] / F\left[e_{0}, \ldots, e_{n}\right]
$$

is a finite extension. Another application of the tower lemma implies that

$$
F\left[e_{0}, \ldots, e_{n}, \alpha\right] / F
$$

is a finite extension; and so α is algebraic over F.

Algebraic closure.

For a given polynomial $p(x) \in F[x]$, we have found a field E that contains all the zeros of $p(x)$ (and it is generated by these
zeros and F). Can we find a field that contains zeros of all the non-constant polynomials over F?

Definition 8 A field E is called algebraically closed if any polynomial in $\mathrm{E}[\mathrm{x}] \backslash \mathrm{E}$ has a zero in E .

Lemma 9 Suppose E is algebraically closed. Then for any $\mathrm{f}(\mathrm{x}) \in$ $\mathrm{E}[x] \backslash \mathrm{E}$ there are α_{i} 's in E such that

$$
f(x)=\alpha_{0} \prod_{i=1}^{n}\left(x-\alpha_{i}\right)
$$

Proof. We proceed by induction on the degree of f. If f is of degree 1 , there is nothing to prove. Suppose $f(x) \in E[x]$ is of degree $n+1$. Since E is algebraically closed, there is $\alpha \in E$ such that $f(\alpha)=0$. Hence by factor theorem, there is $p(x) \in E[x]$ such that $f(x)=(x-\alpha) p(x)$. In particular, $\operatorname{deg} p=n$; and so by the induction hypothesis it can be written as a product of degree 1 factors; and claim follows.

Theorem 10 Suppose F is a field. Then there is a field extension E / F such that E is algebraically closed.

Proof. First we will construct a field E_{1} such that any nonconstant monic polynomial of $F[x]$ has a zero in E_{1}. This means for any monic polynomial $f \in F[x] \backslash F$, we need to have $\alpha_{f} \in$ E_{1} such that $f\left(\alpha_{f}\right)=0$. This means there should be a ring homomorphism from the ring of polynomials

$$
A:=F\left[x_{f} \mid f \in F[x] \backslash F \text { is monic }\right]
$$

to E_{1} which sends χ_{f} to α_{f}. And the kernel of this homomorphism contains $f\left(\chi_{f}\right)$ as $f\left(\alpha_{f}\right)=0$. This gives us the idea of considering the ideal \mathfrak{a} of A that is generated by $\left\{f\left(x_{f}\right) \mid f \in\right.$ $F[x] \backslash F$ is monic $\}$. If we show \mathfrak{a} is a proper ideal, then there is $\mathfrak{m} \in \operatorname{Max}(A)$ such that $\mathfrak{a} \subseteq \mathfrak{m}$. Then we can set $E_{1}:=A / \mathfrak{m}$ and $\alpha_{f}:=x_{f}+m$; then E_{1} is a field and $f\left(\alpha_{f}\right)=f\left(x_{f}\right)+m=0$ (as $\left.\mathfrak{f}\left(x_{f}\right) \in \mathfrak{a} \subseteq \mathfrak{m}\right)$.
\mathfrak{a} is proper. Suppose to the contrary that $\mathfrak{a}=A$. Then there are monic polynomials $f_{1}, \ldots, f_{n} \in F[x] \backslash F$ and $g_{1}, \ldots, g_{n} \in A$ such that

$$
g_{1} f_{1}\left(x_{f_{1}}\right)+g_{2} f_{2}\left(x_{f_{2}}\right)+\cdots+g_{n} f_{n}\left(x_{f_{n}}\right)=1 .
$$

Let $y_{1}:=x_{f_{1}}, \ldots, y_{n}:=x_{f_{n}}$ and y_{n+1}, \ldots, y_{m} be the rest of
variables that appear in g_{i} 's. And so

$$
\begin{equation*}
g_{1}\left(y_{1}, \ldots, y_{m}\right) f_{1}\left(y_{1}\right)+\cdots+g_{n}\left(y_{1}, \ldots, y_{m}\right) f_{n}\left(y_{n}\right)=1 \tag{1}
\end{equation*}
$$

Let K be a splitting field of $\prod_{i=1}^{n} f_{i}(x)$ over F. So there are $\alpha_{i} \in K$ such that $f_{i}\left(\alpha_{i}\right)=0$. Let's evaluate both sides of (1) at $\left(\alpha_{1}, \ldots, \alpha_{n}, 0, \ldots, 0\right)$. Then we get $0=1$ which is a contradiction.

Recursively we define a sequence of fields

$$
\mathrm{E}_{0}:=\mathrm{F} \subseteq \mathrm{E}_{1} \subseteq \mathrm{E}_{2} \subseteq \cdots
$$

such that any non-constant monic polynomial in $E_{i}[x]$ has a zero in E_{i+1}. Let $E:=\bigcup_{i=1}^{\infty} E_{i}$.
E is a field. For any $\alpha, \beta \in E \backslash\{0\}$, there are i, j such that $\alpha \in E_{i}$ and $\beta \in E_{j}$. W.L.O.G. we can and will assume that $\mathfrak{i} \leq j$; and so $\alpha, \beta \in E_{j}$; and so $\alpha \pm \beta, \alpha \beta^{ \pm 1} \in E_{j}$. Therefore $\alpha \pm \beta, \alpha \beta^{ \pm 1} \in E$.
E is algebraically closed. Let $p(x) \in E[x] \backslash E$ is a monic polynomial. Since $p(x)$ has only finitely many coefficients, $p(x) \in E_{i}[x]$ for some i. And so $p(x)$ has a zero in E_{i+1}; thus $p(x)$ has a zero in E, and claim follows.

In the next lecture, we show that if E / F is a field extension and E is algebraically closed, then the algebraic closure of F in E is algebraically closed as well. And this is called an algebraic closure of F .

