Math200b, lecture 18

Golsefidy

Finite fields

In the previous lecture we proved that a finite field F has
order p? for some prime p and positive integer d. And we have
XP—x =] «cF(x — ). Now we want to prove the existence

and uniqueness of a field of order p¢.

Theorem 1 Suppose p is a prime p and d is a positive integer. Then

there is a unique, up to an isomorphism, field of order p4.

We denote a field of order p? by F,q; in particular we let
F, :=7Z/pZ.
Proof. Let E be a splitting field of xP* — x over IF,. And let
X :={x € E| o = ot
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We prove that X is a subfield of E.

F, € X. By Fermat’s little theorem, a? = a for any a € IF;
and so IF, C X.

Closed under addition. Notice that E is of characteristic p.

d d d
Andso (x +y)P =xP +yP forany x,y € E. Hence
/ /pd pd /pd / /
x, & EX=2D(a+a )P = +aP =a+oa =2 o+« € X

Closed under negation. Notice if p is odd, (-1)P" = —1. If
p=2,-1=1inE. Hence

xEX= (—oc)pd = (—1)Pdocpd =—-ax=-u€X.
Closed under multiplication.
o, o €EX= (ococ’)pd = P P = el = ool € X
Closed under taking inverse.
e X\ {0} = (@YW' = (@) '=als aleX

Since E is generated by zeros of xP* —x and IF,, by the above
results we deduce that E = X.
|E| = p%. We have already proved that E consists of zeros of

xP* —x; and so |E| < p4. Ttisenough to show that xP" —x does not
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have multiple roots in E. If it does, then XP'—x = (x—PB)?*q(x) for
some 3 € E and ((x) € E[x]. Let’s take the formal derivative
of both sides;

(PP =1 = 20~ B)q(x) + (x = B)'q'(x) = (x~ Bh(x) = -1
for some h(x) € E[x], which is a contradiction. This shows the
existence of a finite field of order p¢.

On the other hand, if F is a field of order p9, then its char-
acteristic should be a prime divisor of p¢%; and so it is p. This
implies that IF, = Z/pZ is a subfield of F. We also know that
P —x =TI «efF(x — «) in F[x]; and so F is a splitting field of

d : o :
xP" —x over [F,; and so up to an isomorphism is unique. @~ W

Algebraic extensions.

Lemma 2 (Tower lemma) Suppose E/F and K/E are finite field
extensions. Then K/F is a finite field extension and [K : F] = [K :
EJ[E : F].

Proof. Suppose {ey,...,en} is an F-basis of E and {ki,...,kn}
is an E-basis of K. We show that {eikj|]] <i<m,1 <j<n}is

an F-basis of K.



Independence. Suppose 2;; fijeik; = 0 for some fj; € F.
Then }; fije; € E and X;(X; fijei)k;. As ky's are E-linearly
independent, we deduce that ) ; fije; = 0 for any j. As e;’s are
F-linearly independent, we get that fi; = 0 for any i and j.

Span. Since the E-span of k;’s is K, there are ci’s in E, for
any k € Kthere are ¢;’s in E such that k = }; ¢jk;. Since E is the
F-span of e;’s, there are fj;’s in F such that ¢; = };; fijei. Hence
k = 25(2i fijeo)k; = 2 fijeik;; and claim follows. |

Notice that if [K : F] < oo, then clearly [K : E] < co and
[E : F] < o0; and so we get:

Lemma 3 Suppose E/F and K/E are field extensions. Then
E/F and K/E are finite & K/F is finite.

These are the type of field extension properties that we like the
most.
We say E/Fis an algebraic extension if any « € E is algebraic

over F.

Lemma 4 Suppose E/F is a finite field extension. Then E/F is an

algebraic field extension.



Proof. For any « € E, the set {1, ¢, &?, ...} is F-linearly depen-
dent as otherwise [E : F] = co. Hence there are f,,....f, € F
such that f,, # 0 and fp+ i+ - -+ L™ = 0. Hence « is a zero
of p(x) := XL, fix* € F[x] \ F; and claim follows.

N

Lemma 5 Suppose E/F is a field extension. If «,3 € E\ {0} are

algebraic over F, then o + 3, «3*! are algebraic over F.

Proof. Since o is algebraic over F, [Flx] : F| = degmgyfr < co.
Since 3 is algebraic over F, it is algebraic over F[x]; and so
[Flo, B] : Flex]] < oo. Since Fle, B]/F[] and F[x]/F are finite
extensions, F[x, B]/F is a finite extension. Therefore it is an
algebraic extension, and so « + 3 and «f*! are algebraic over
F. H

Proposition 6 Suppose E/F is a field extension. Let
K := {o« € E| « is algebraic over F}.

Then K is a subfield of E and K/F is an algebraic extension. K is

called the algebraic closure of F in E.

Proof. By the previous Lemma, K is a subfield of E. Notice that

forany a € F, ais a zeroof x — a € F[x]; and so F € K. |
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Theorem 7 Suppose E/F and K/E are algebraic field extensions.
Then Then K/F is an algebraic field extension.

Proof. Suppose « € K. Since K/E is algebraic, « is a zero
of a polynomial }[*,eix' € E[x] \ E. Since E/F is algebraic,

ei’s are algebraic over F. Hence Fley]/F, Fley, e1]/Fleo],...,

Fleo,...,en]/Fleo, ..., en_1] are finite field extensions. Thus
Fleo,...,en]|/F is a finite field extension. Since « is a zero of
Y, eixt, a is algebraic over Fley, ..., e,]. Therefore

Fleo,...,en, &]/Fleg, ..., en]

is a finite extension. Another application of the tower lemma
implies that
Fleo,...,en, |/F

is a finite extension; and so « is algebraic over F.

Algebraic closure.

For a given polynomial p(x) € F[x], we have found a field E

that contains all the zeros of p(x) (and it is generated by these
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zeros and F). Can we find a field that contains zeros of all the

non-constant polynomials over F?

Definition 8 A field E is called algebraically closed if any polyno-

mial in E[x] \ E has a zero in E.

Lemma 9 Suppose E is algebraically closed. Then for any f(x) €
E[x] \ E there are oi’s in E such that

f(x) = oo | [(x— o)

Proof. We proceed by induction on the degree of f. If f is of
degree 1, there is nothing to prove. Suppose f(x) € E[x] is of
degree n+1. Since E is algebraically closed, thereis « € E such
that f(o) = 0. Hence by factor theorem, there is p(x) € E[x]
such that f(x) = (x — )p(x). In particular, degp = n; and so
by the induction hypothesis it can be written as a product of

degree 1 factors; and claim follows. |

Theorem 10 Suppose F is a field. Then there is a field extension
E/F such that E is algebraically closed.



Proof. First we will construct a field E; such that any non-
constant monic polynomial of F[x] has a zero in E;. This means
for any monic polynomial f € F[x] \ F, we need to have «; €
E;, such that f(x¢) = 0. This means there should be a ring

homomorphism from the ring of polynomials
A = F[x¢| f € F[x] \ F is monic]

to E; which sends xf to os. And the kernel of this homomor-
phism contains f(x¢) as f(«¢) = 0. This gives us the idea of
considering the ideal a of A that is generated by {f(x¢)|f €
F[x] \ Fis monic}. If we show a is a proper ideal, then there is
m € Max(A) such that a € m. Then we can set E; := A/m and
s = Xx¢ + m; then E; is a field and (o) = f(xf) + m = 0 (as
f(xf) € a C m).

a is proper. Suppose to the contrary that a = A. Then there
are monic polynomials f;,...,f, € F[x]\ Fand g;,...,gn € A
such that

g1fi(xf,) + gafa(xs,) + -+ + gnfulxs,) = 1.

Let y; = %¢,,---,Yn = Xf, and Yn+1,...,Yym be the rest of



variables that appear in gi’s. And so

g1yt -+ yn)fiy) + -+ gn(yr, -, ym)fulyn) = 1. (1)

Let K be a splitting field of []i_, fi(x) over F. So there are
«; € K such that fi(e;) = 0. Let’s evaluate both sides of (1) at
(t1,...,0n,0,...,0). Then we get 0 = 1 which is a contradic-
tion.

Recursively we define a sequence of fields
E022F§E1§E2§"'

such that any non-constant monic polynomial in Ei[x]| has a
zeroin Eiyy. Let E .= (J2, Ei.

E is a field. For any «, 3 € E \ {0}, there are 1,j such that
o« € Eyand B € E;. W.L.O.G. we can and will assume that
i<jand so «, B € Ej; and so « = B, af*! € E;. Therefore
o+ B, ot € E.

E is algebraically closed. Let p(x) € E[x] \ E is a monic
polynomial. Since p(x) has only finitely many coefficients,
p(x) € Ei[x] for some i. And so p(x) has a zero in Ei;;; thus

p(x) has a zero in E, and claim follows. |



In the next lecture, we show that if E/F is a field extension
and E is algebraically closed, then the algebraic closure of F in
E is algebraically closed as well. And this is called an algebraic

closure of F.
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