
Math200b, lecture 18

Golsefidy

Finite fields

In the previous lecture we proved that a finite field F has
order pd for some prime p and positive integer d. And we have
xp

d − x 󳓬
󳕑

α∈F(x − α). Now we want to prove the existence
and uniqueness of a field of order pd.

Theorem 1 Suppose p is a prime p and d is a positive integer. Then
there is a unique, up to an isomorphism, field of order pd.

We denote a field of order pd by 󳕯pd; in particular we let
󳕯p :󳓬 󳖃/p󳖃.

Proof. Let E be a splitting field of xpd − x over 󳕯p. And let

X :󳓬 {α ∈ E| αpd
󳓬 α}.
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We prove that X is a subfield of E.
󳕯p ⊆ X. By Fermat’s little theorem, ap 󳓬 a for any a ∈ 󳕯p;

and so 󳕯p ⊆ X.
Closed under addition. Notice that E is of characteristic p.

And so (x + y)pd 󳓬 xp
d
+ ypd for any x,y ∈ E. Hence

α,α′ ∈ X ⇒ (α + α′)pd 󳓬 αpd
+ α′pd

󳓬 α + α′ ⇒ α + α′ ∈ X.

Closed under negation. Notice if p is odd, (−1)pd 󳓬 −1. If
p 󳓬 2, −1 󳓬 1 in E. Hence

α ∈ X ⇒ (−α)pd 󳓬 (−1)pdαpd
󳓬 −α ⇒ −α ∈ X.

Closed under multiplication.

α,α′ ∈ X ⇒ (αα′)pd 󳓬 αpdα′pd
󳓬 αα′ ⇒ αα′ ∈ X.

Closed under taking inverse.

α ∈ X \ {0} ⇒ (α−1)pd 󳓬 (αpd)−1
󳓬 α−1 ⇒ α−1 ∈ X.

Since E is generated by zeros of xpd−x and 󳕯p, by the above
results we deduce that E 󳓬 X.

|E| 󳓬 pd. We have already proved that E consists of zeros of
xp

d−x; and so |E| ≤ pd. It is enough to show that xpd−xdoes not
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have multiple roots inE. If it does, then xp
d−x 󳓬 (x−β)2q(x) for

some β ∈ E and q(x) ∈ E[x]. Let’s take the formal derivative
of both sides;

(pd)xpd−1 − 1 󳓬 2(x−β)q(x)+ (x−β)2q′(x) ⇒ (x−β)h(x) 󳓬 −1,

for some h(x) ∈ E[x], which is a contradiction. This shows the
existence of a finite field of order pd.

On the other hand, if F is a field of order pd, then its char-
acteristic should be a prime divisor of pd; and so it is p. This
implies that 󳕯p 󳓬 󳖃/p󳖃 is a subfield of F. We also know that
xp

d − x 󳓬
󳕑

α∈F(x − α) in F[x]; and so F is a splitting field of
xp

d − x over 󳕯p; and so up to an isomorphism is unique. 󰃈

Algebraic extensions.

Lemma 2 (Tower lemma) Suppose E/F and K/E are finite field
extensions. Then K/F is a finite field extension and [K : F] 󳓬 [K :

E][E : F].

Proof. Suppose {e1, . . . , em} is an F-basis of E and {k1, . . . , kn}
is an E-basis of K. We show that {eikj |1 ≤ i ≤ m, 1 ≤ j ≤ n} is
an F-basis of K.
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Independence. Suppose
󳕐

i,j fijeikj 󳓬 0 for some fij ∈ F.
Then

󳕐
i fijei ∈ E and

󳕐
j(
󳕐

i fijei)kj. As kj’s are E-linearly
independent, we deduce that

󳕐
i fijei 󳓬 0 for any j. As ei’s are

F-linearly independent, we get that fij 󳓬 0 for any i and j.
Span. Since the E-span of kj’s is K, there are ci’s in E, for

any k ∈ K there are cj’s in E such that k 󳓬
󳕐

j cjkj. Since E is the
F-span of ei’s, there are fij’s in F such that cj 󳓬

󳕐
i fijei. Hence

k 󳓬
󳕐

j(
󳕐

i fijei)kj 󳓬
󳕐

i,j fijeikj; and claim follows. 󰃈
Notice that if [K : F] < ∞, then clearly [K : E] < ∞ and

[E : F] < ∞; and so we get:

Lemma 3 Suppose E/F and K/E are field extensions. Then

E/F and K/E are finite ⇔ K/F is finite.

These are the type of field extension properties that we like the
most.

We sayE/F is an algebraic extension if anyα ∈ E is algebraic
over F.

Lemma 4 Suppose E/F is a finite field extension. Then E/F is an
algebraic field extension.
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Proof. For any α ∈ E, the set {1,α,α2, . . .} is F-linearly depen-
dent as otherwise [E : F] 󳓬 ∞. Hence there are f0, . . . , fn ∈ F

such that fn 󲧰 0 and f0+ f1α+ · · ·+ fnα
n 󳓬 0. Hence α is a zero

of p(x) :󳓬
󳕐n

i󳓬0 fix
i ∈ F[x] \ F; and claim follows.

󰃈

Lemma 5 Suppose E/F is a field extension. If α,β ∈ E \ {0} are
algebraic over F, then α ± β,αβ±1 are algebraic over F.

Proof. Since α is algebraic over F, [F[α] : F] 󳓬 degmα,F < ∞.
Since β is algebraic over F, it is algebraic over F[α]; and so
[F[α,β] : F[α]] < ∞. Since F[α,β]/F[α] and F[α]/F are finite
extensions, F[α,β]/F is a finite extension. Therefore it is an
algebraic extension, and so α ± β and αβ±1 are algebraic over
F. 󰃈

Proposition 6 Suppose E/F is a field extension. Let

K :󳓬 {α ∈ E| α is algebraic over F}.

Then K is a subfield of E and K/F is an algebraic extension. K is
called the algebraic closure of F in E.

Proof. By the previous Lemma, K is a subfield of E. Notice that
for any a ∈ F, a is a zero of x − a ∈ F[x]; and so F ⊆ K. 󰃈
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Theorem 7 Suppose E/F and K/E are algebraic field extensions.
Then Then K/F is an algebraic field extension.

Proof. Suppose α ∈ K. Since K/E is algebraic, α is a zero
of a polynomial

󳕐n
i󳓬0 eix

i ∈ E[x] \ E. Since E/F is algebraic,
ei’s are algebraic over F. Hence F[e0]/F, F[e0, e1]/F[e0], . . .,
F[e0, . . . , en]/F[e0, . . . , en−1] are finite field extensions. Thus
F[e0, . . . , en]/F is a finite field extension. Since α is a zero of󳕐n

i󳓬0 eix
i, α is algebraic over F[e0, . . . , en]. Therefore

F[e0, . . . , en,α]/F[e0, . . . , en]

is a finite extension. Another application of the tower lemma
implies that

F[e0, . . . , en,α]/F

is a finite extension; and so α is algebraic over F.
󰃈

Algebraic closure.

For a given polynomial p(x) ∈ F[x], we have found a field E

that contains all the zeros of p(x) (and it is generated by these
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zeros and F). Can we find a field that contains zeros of all the
non-constant polynomials over F?

Definition 8 A field E is called algebraically closed if any polyno-
mial in E[x] \ E has a zero in E.

Lemma 9 Suppose E is algebraically closed. Then for any f(x) ∈
E[x] \ E there are αi’s in E such that

f(x) 󳓬 α0

n󳕘
i󳓬1

(x − αi).

Proof. We proceed by induction on the degree of f. If f is of
degree 1, there is nothing to prove. Suppose f(x) ∈ E[x] is of
degree n+1. Since E is algebraically closed, there is α ∈ E such
that f(α) 󳓬 0. Hence by factor theorem, there is p(x) ∈ E[x]
such that f(x) 󳓬 (x − α)p(x). In particular, deg p 󳓬 n; and so
by the induction hypothesis it can be written as a product of
degree 1 factors; and claim follows. 󰃈

Theorem 10 Suppose F is a field. Then there is a field extension
E/F such that E is algebraically closed.
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Proof. First we will construct a field E1 such that any non-
constant monic polynomial of F[x] has a zero in E1. This means
for any monic polynomial f ∈ F[x] \ F, we need to have αf ∈
E1 such that f(αf) 󳓬 0. This means there should be a ring
homomorphism from the ring of polynomials

A :󳓬 F[xf | f ∈ F[x] \ F is monic]

to E1 which sends xf to αf. And the kernel of this homomor-
phism contains f(xf) as f(αf) 󳓬 0. This gives us the idea of
considering the ideal a of A that is generated by {f(xf)| f ∈
F[x] \ F is monic}. If we show a is a proper ideal, then there is
m ∈ Max(A) such that a ⊆ m. Then we can set E1 :󳓬 A/m and
αf :󳓬 xf + m; then E1 is a field and f(αf) 󳓬 f(xf) + m 󳓬 0 (as
f(xf) ∈ a ⊆ m).
a is proper. Suppose to the contrary that a 󳓬 A. Then there

are monic polynomials f1, . . . , fn ∈ F[x] \ F and g1, . . . ,gn ∈ A

such that

g1f1(xf1) + g2f2(xf2) + · · · + gnfn(xfn) 󳓬 1.

Let y1 :󳓬 xf1, . . . ,yn :󳓬 xfn and yn+1, . . . ,ym be the rest of
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variables that appear in gi’s. And so

g1(y1, . . . ,ym)f1(y1) + · · · + gn(y1, . . . ,ym)fn(yn) 󳓬 1. (1)

Let K be a splitting field of
󳕑n

i󳓬1 fi(x) over F. So there are
αi ∈ K such that fi(αi) 󳓬 0. Let’s evaluate both sides of (1) at
(α1, . . . ,αn, 0, . . . , 0). Then we get 0 󳓬 1 which is a contradic-
tion.

Recursively we define a sequence of fields

E0 :󳓬 F ⊆ E1 ⊆ E2 ⊆ · · ·

such that any non-constant monic polynomial in Ei[x] has a
zero in Ei+1. Let E :󳓬

󳕒∞
i󳓬1 Ei.

E is a field. For any α,β ∈ E \ {0}, there are i, j such that
α ∈ Ei and β ∈ Ej. W.L.O.G. we can and will assume that
i ≤ j; and so α,β ∈ Ej; and so α ± β,αβ±1 ∈ Ej. Therefore
α ± β,αβ±1 ∈ E.

E is algebraically closed. Let p(x) ∈ E[x] \ E is a monic
polynomial. Since p(x) has only finitely many coefficients,
p(x) ∈ Ei[x] for some i. And so p(x) has a zero in Ei+1; thus
p(x) has a zero in E, and claim follows. 󰃈
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In the next lecture, we show that if E/F is a field extension
and E is algebraically closed, then the algebraic closure of F in
E is algebraically closed as well. And this is called an algebraic
closure of F.
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