Math200b, lecture 17

Golsefidy

Splitting fields

In the previous lecture we proved (most parts of) the following theorem.

Theorem 1 Suppose E / F is a field extension, $\alpha \in \mathrm{E}$ is algebraic over F. Then

1. there is a unique monic polynomial $m_{\alpha, F}(x) \in F[x]$ such that

$$
m_{\alpha, F}(x) \mid p(x) \Leftrightarrow p(\alpha)=0
$$

$$
\text { for } p(x) \in \mathrm{F}[\mathrm{x}] \text {. }
$$

2. $\mathrm{m}_{\alpha, \mathrm{F}}(\mathrm{x})$ is irreducible in $\mathrm{F}[\mathrm{x}]$.
3. The ring $\mathrm{F}[\alpha]$ generated by F and α is a field; and

$$
\mathrm{F}[\alpha] \simeq \mathrm{F}[\mathrm{x}] /\left\langle\mathrm{m}_{\alpha, \mathrm{F}} \mathrm{~F}(\mathrm{x})\right\rangle .
$$

4. $F[\alpha]=\left\{\sum_{i=0}^{d_{0}-1} a_{i} \alpha^{i} \mid a_{i} \in F\right\}$ where $d_{0}=\operatorname{deg} m_{\alpha, F}(x)$ where $\mathrm{d}_{0}:=\operatorname{deg} \mathfrak{m}_{\alpha, \mathrm{F}}(\mathrm{x})$; in particular $\operatorname{dim}_{\mathrm{F}} \mathrm{F}[\alpha]=\operatorname{deg} \mathfrak{m}_{\alpha, \mathrm{F}}(\mathrm{x})$.
5. $\left\{1, \alpha, \ldots, \alpha^{\mathrm{d}_{0}-1}\right\}$ is an F -basis of $\mathrm{F}[\alpha]$.

Let's point out that if E / F is a field extension, E can be viewed as a vector space over F; the dimension $\operatorname{dim}_{F} E$ of E as an F vector space is denoted by $[E: F]$ and it called the degree of the field extension E/F.

Proof. We formulated the above theorem in terms of the evaluation map $\phi_{\alpha}: F[x] \rightarrow E$; for instance part (1) is equivalent to saying that $\operatorname{ker} \phi_{\alpha}=\left\langle\mathfrak{m}_{\alpha, \mathrm{F}}(\mathrm{x})\right\rangle$. Part (3) can be deduced using the first isomorphism theorem and maximality of $\left\langle\mathfrak{m}_{\alpha, \mathrm{F}}(\mathrm{x})\right\rangle$; and so on. Now we address the last part. For any $\beta \in F[\alpha]$, there is a polynomial $f(x) \in F[x]$ such that $\beta=\phi_{\alpha}(f)=f(\alpha)$ where ϕ_{α} is the evaluation map at α. By long division there are $q(x), r(x) \in F[x]$ such that $f(x)=q(x) m_{\alpha, F}(x)+r(x)$ and $\operatorname{deg} r<\operatorname{deg} m_{\alpha, F}=d_{0}$. And

SO

$$
\beta=f(\alpha)=q(\alpha) \underbrace{m_{\alpha, F}(\alpha)}_{0}+r(\alpha)=r(\alpha) ;
$$

hence if $r(x)=\sum_{i=0}^{d_{0}-1} c_{i} x^{i}$, then $\beta=r(\alpha)=\sum_{\mathfrak{i}=0}^{d_{0}-1} c_{i} \alpha^{i}$ which implies that the F -span of $\left\{1, \alpha, \cdots, \alpha^{\mathrm{d}_{0}-1}\right\}$ is $\mathrm{F}[\alpha]$.

Next we show that $1, \alpha, \cdots, \alpha^{d_{0}-1}$ are F-linearly independent. Suppose $\sum_{\mathfrak{i}=0}^{\mathrm{d}_{0}-1} c_{i} \alpha^{\mathfrak{i}}=0$; and so α is a zero of $g(x)=\sum_{\mathfrak{i}=0}^{\mathrm{d}_{0}-1}$. Therefore $\mathrm{m}_{\alpha, \mathrm{F}}(x) \mid g(x)$; comparing their degrees we deduce that $g(x)=0$; and so $c_{i}=0$ for any i, and claim follows.

We also pointed out the next lemma which gives us a way to find the minimal polynomial of a given algebraic number (using various irreducibility criteria).

Lemma 2 Suppose E / F is a field extension, and $\alpha \in E$ is a zero of an irreducible polynomial $p(x) \in F[x]$. Then there is $c \in F^{\times}$such that $\mathrm{m}_{\alpha, \mathrm{F}}(x)=\mathrm{cp}(x)$.

Next we proved a kind of converse of this lemma:
Lemma 3 Suppose $\mathrm{p}(\mathrm{x}) \in \mathrm{F}[\mathrm{x}]$ is irreducible. Then there is a field extension E / F and $\alpha \in E$ such that (1) α is a zero of $p(x)$; and (2) $\mathrm{E}=\mathrm{F}[\alpha]$.

Repeated application of Lemma 3 gives us the following:
Lemma 4 (Existence of a splitting field) Suppose $p(x) \in F[x] \backslash$ F. Then there is a field extension E / F and $\alpha_{1}, \ldots, \alpha_{n} \in E$ such that

1. $p(x)=c\left(x-\alpha_{1}\right) \cdots\left(x-\alpha_{n}\right)$ for some $c \in F$.
2. $E=F\left[\alpha_{1}, \ldots, \alpha_{n}\right]$.
(We say E is a splitting field of $p(x)$ over F.)
Proof. We proceed by induction on the degree of $p(x)$. If $\operatorname{deg} p=1$, then $p(x)=c(x-\alpha)$ for some $\alpha \in F$; hence $E=F$ and $\alpha_{1}=\alpha$ satisfy the claim. Since $F[x]$ is a PID, it is a UFD; and so we can write $p(x)$ as a product of irreducible polynomials $p_{i}(x)$'s. By Lemma 3, there is a field extension E_{1} / F and $\alpha_{1} \in E_{1}$ such that

$$
\begin{equation*}
p_{1}\left(\alpha_{1}\right)=0 \text { and } E_{1}=F_{1}\left[\alpha_{1}\right] . \tag{1}
\end{equation*}
$$

As $p_{1}(x) \mid p(x)$, we have $p\left(\alpha_{1}\right)=0$; and by the factor theorem we deduce that there is $q(x) \in E_{1}[x]$ such that $p(x)=\left(x-\alpha_{1}\right) q(x)$. As $\operatorname{deg} q=\operatorname{deg} p-1$, by the induction hypothesis there is a field extension E / E_{1} and $\alpha_{2}, \ldots, \alpha_{n} \in E$ such that

$$
\begin{equation*}
q(x)=c\left(x-\alpha_{2}\right) \cdots\left(x-\alpha_{n}\right) \text { and } E=E_{1}\left[\alpha_{2}, \ldots, \alpha_{n}\right], \tag{2}
\end{equation*}
$$

for some $c \in E_{1}$. By (1) and (2) we have $p(x)=\left(x-\alpha_{1}\right) q(x)=$ $\mathrm{c} \prod_{i=1}^{n}\left(x-\alpha_{i}\right)$ and $E=F\left[\alpha_{1}\right]\left[\alpha_{2}, \ldots, \alpha_{n}\right]=F\left[\alpha_{1}, \ldots, \alpha_{n}\right]$. And we notice that c is equal to the leading coefficient of $p(x)$; and so it is in F^{\times}. And claim follows.

Next we work towards uniqueness of a splitting field; and similar to the existence part, we add one zero at a time.

Lemma 5 (Towards Uniqueness of a splitting field) Suppose F and F^{\prime} are two fields, $\theta: \mathrm{F} \rightarrow \mathrm{F}^{\prime}$ is a field isomorphism, and $\mathrm{p}(\mathrm{x}) \in \mathrm{F}[x]$ is irreducible.

1. We can extend θ to an isomorphism $\theta: F[x] \rightarrow F^{\prime}[x]$ by letting $\theta(x)=x$; that means $\theta\left(\sum_{i=0}^{\infty} a_{i} x^{i}\right):=\sum_{i=0}^{\infty} \theta\left(a_{i}\right) x^{i}$. Then $\theta(p)$ is irreducible in $\mathrm{F}^{\prime}[\mathrm{x}]$.
2. Suppose E / F and E^{\prime} / F^{\prime} are field extensions, $\alpha \in E$ is a zero of $p(x)$ and $\alpha^{\prime} \in E^{\prime}$ is a zero of $\theta(p)$. Then there is

$$
\widehat{\theta}: F[\alpha] \xrightarrow{\sim} F^{\prime}\left[\alpha^{\prime}\right]
$$

such that $\widehat{\theta}(\alpha)=\alpha^{\prime}$ and $\left.\widehat{\theta}\right|_{F}=\theta$.
Proof. Part (1) is clear; so we focus on the second part. Since
$p(x)$ and $\theta(p)$ are irreducible by Lemma 2 we have that

$$
\begin{equation*}
\left\langle\mathfrak{m}_{\alpha, F}(x)\right\rangle=\langle p(x)\rangle \text { and }\left\langle m_{\alpha^{\prime}, F^{\prime}}(x)\right\rangle=\langle\theta(p)\rangle . \tag{3}
\end{equation*}
$$

On the other hand, the isomorphism $\theta: F[x] \rightarrow F^{\prime}[x]$ induces an isomorphism $\bar{\theta}: F[x] /\langle p(x)\rangle \rightarrow \mathrm{F}^{\prime}[x] /\langle\theta(p)\rangle$,

$$
\begin{equation*}
\bar{\theta}(f+\langle p(x)\rangle):=\theta(f)+\langle\theta(p)\rangle . \tag{4}
\end{equation*}
$$

By Theorem 1 and (3), we have that evaluation maps induce the following isomorphisms:

$$
\mathrm{F}[\mathrm{x}] /\langle p(\mathrm{x})\rangle \xrightarrow{\phi} \mathrm{F}[\alpha] \text { and } \mathrm{F}^{\prime}[\mathrm{x}] /\langle\theta(p)\rangle \xrightarrow{\phi^{\prime}} \mathrm{F}^{\prime}\left[\alpha^{\prime}\right] .
$$

Hence $\widehat{\theta}:=\phi^{\prime} \circ \bar{\theta} \circ \phi^{-1}: \mathrm{F}[\alpha] \rightarrow \mathrm{F}^{\prime}\left[\alpha^{\prime}\right]$ is an isomorphism, and $\left.\widehat{\theta}\right|_{F}=\theta$ and $\widehat{\theta}(\alpha)=\alpha^{\prime}$; and claim follows. The following diagram might illustrate better various steps of the argument.

Theorem 6 (A bit more than uniqueness of a splitting field) Suppose F and F^{\prime} are two fields, $\theta: \mathrm{F} \rightarrow \mathrm{F}^{\prime}$ is a field isomorphism and $p(x) \in F[x] \backslash F$. Suppose E is a splitting of $p(x)$ over F and E^{\prime} is a splitting of $\theta(\mathrm{p})$ over F^{\prime}. Then there is $\widehat{\theta}: \mathrm{E} \xrightarrow{\sim} \mathrm{E}^{\prime}$ such that $\left.\widehat{\theta}\right|_{F}=\theta$.

Proof. First we notice that if all the irreducible factors of $p(x)$ in $F[x]$ have degree 1 , then there are α_{i} 's and c in F such that $p(x)=$ $\mathrm{c} \prod_{i=1}^{n}\left(x-\alpha_{i}\right)$; and so $E=F$ and $\theta(p)=\theta(c) \prod_{i=1}^{n}\left(x-\theta\left(\alpha_{i}\right)\right)$ which implies $E^{\prime}=F^{\prime}$. Therefore we $\widehat{\theta}=\theta$ satisfies the claim.

Now similar to the proof of existence, we proceed by induction on the degree of $p(x)$. Base of induction follows from the above discussion. To show the induction step, we write $p(x)$ as a product of irreducible polynomials $p_{i}(x)$'s in $F[x]$. By definition of a splitting field, we have that there are α_{i} 's in E and $\alpha_{i}^{\prime \prime}$ s in E^{\prime} such that

$$
\begin{align*}
& E=F\left[\alpha_{1}, \ldots, \alpha_{n}\right], p(x)=c \prod_{i=1}^{n}\left(x-\alpha_{i}\right), \text { and } \\
& E^{\prime}=F^{\prime}\left[\alpha_{1}^{\prime}, \ldots, \alpha_{n}^{\prime}\right], \theta(p)=\theta(c) \prod_{i=1}^{n}\left(x-\alpha_{i}^{\prime}\right) \tag{5}
\end{align*}
$$

Since $p_{1}(x) \mid p(x)$, without loss of generality we can and will assume that α_{1} is a zero of $p_{1}(x)$; and similarly, as $\theta\left(p_{1}\right) \mid \theta(p)$, we can and will assume that α_{1}^{\prime} is a zero of $\theta\left(p_{1}\right)$. By the previous lemma, there is an isomorphism $\theta_{1}: \mathrm{F}\left[\alpha_{1}\right] \rightarrow \mathrm{F}^{\prime}\left[\alpha_{1}^{\prime}\right]$ such that $\theta_{1}\left(\alpha_{1}\right)=\alpha_{1}^{\prime}$ and $\left.\theta_{1}\right|_{F}=\theta$. As α_{1} is a zero of p, there is $q(x) \in F\left[\alpha_{1}\right][x]$ such that $p(x)=q(x)\left(x-\alpha_{1}\right)$. Applying θ_{1} to both sides, we get that

$$
\theta(p)=\theta_{1}(p)=\theta_{1}(q)\left(x-\theta_{1}\left(\alpha_{1}\right)\right)=\theta_{1}(q)\left(x-\alpha_{1}^{\prime}\right) .
$$

Claim. E is a splitting field of $\mathrm{q}(\mathrm{x})$ over $\mathrm{F}\left[\alpha_{1}\right]$; and E^{\prime} is a splitting field of $\theta_{1}(q)$ over $\mathrm{F}^{\prime}\left[\alpha_{1}^{\prime}\right]$.

Proof of Claim. As $p(x)=c \prod_{i=1}^{n}\left(x-\alpha_{i}\right)$ and $p(x)=(x-$ $\left.\alpha_{1}\right) \mathrm{q}(\mathrm{x})$, we deduce that $\mathrm{q}(\mathrm{x})=\mathrm{c} \prod_{\mathrm{i}=2}^{\mathrm{n}}\left(\mathrm{x}-\alpha_{\mathrm{i}}\right)$; similarly, as $\theta(p)=\theta(c) \prod_{i=1}^{n}\left(x-\alpha_{i}^{\prime}\right)$ and $\theta(p)=\left(x-\alpha_{1}^{\prime}\right) \theta_{1}(q)$, we have $\theta_{1}(q)=\theta(c) \prod_{i=2}^{n}\left(x-\alpha_{i}^{\prime}\right)$. Since

$$
\begin{gathered}
E=F\left[\alpha_{1}, \ldots, \alpha_{n}\right]=\left(F\left[\alpha_{1}\right]\right)\left[\alpha_{2}, \ldots, \alpha_{n}\right], \text { and } \\
E^{\prime}=F^{\prime}\left[\alpha_{1}^{\prime}, \ldots, \alpha_{n}^{\prime}\right]=\left(F^{\prime}\left[\alpha_{1}^{\prime}\right]\right)\left[\alpha_{2}^{\prime}, \ldots, \alpha_{n}^{\prime}\right]
\end{gathered}
$$

claim follows.
As $\operatorname{deg} q=\operatorname{deg} p-1$, by the above Claim we can use the induction hypothesis for $\theta_{1}: F\left[\alpha_{1}\right] \rightarrow F^{\prime}\left[\alpha_{1}^{\prime}\right], q(x)$, and E and
E^{\prime}. Hence there is an isomorphisms $\widehat{\theta}: E \rightarrow E^{\prime}$ such that $\left.\widehat{\theta}\right|_{F\left[\alpha_{1}\right]}=\theta_{1}$. And this implies $\left.\widehat{\theta}\right|_{F}=\left.\theta_{1}\right|_{F}=\theta$ which finishes the proof.

By Lemma 4 (Existence of a splitting field) and Theorem 6 (Uniqueness of a splitting field), we get the following theorem.

Theorem 7 (Splitting field) Suppose $p(x) \in F[x] \backslash F$. Then $p(x)$ has a splitting field E over F ; and if E and E^{\prime} are two splitting fields of $p(x)$ over F, then there is $\phi: E \xrightarrow{\sim} E^{\prime}$ such that $\left.\phi\right|_{F}=i d$.

Finite fields

We will use the existence and uniqueness of splitting fields to show that for any prime power $q=p^{n}$ there is a unique field of order q. We start with investigating a finite field F. Since F is finite, it has a positive characteristic; and as it is an integral domain, its characteristic should be a prime number p. Hence F is a field extension of $\mathbb{Z} / p \mathbb{Z}$. Suppose $[F: \mathbb{Z} / p \mathbb{Z}]=d$; then $|F|=\left|(\mathbb{Z} / p \mathbb{Z})^{\mathrm{d}}\right|=p^{\mathrm{d}}$. And so for any $\alpha \in \mathrm{F}^{\times}, \alpha^{\left|\mathrm{F}^{\times}\right|}=1$, which implies for any $\alpha \in F \backslash\{0\}, \alpha^{p^{d}-1}=1$. Thus any $\alpha \in F$ is a zero of $x^{p^{d}}-x$. Therefore by the generalized factor theorem there
is $q(x) \in F[x]$ such that

$$
x^{p^{d}}-x=q(x) \prod_{\alpha \in F}(x-\alpha) .
$$

Comparing the degrees of both sides, we deduce that $\operatorname{deg} q=0$; and so $\mathrm{q}(\mathrm{x})=\mathrm{c} \in \mathrm{F}^{\times}$. Next comparing the leading coefficients of both sides, we deduce that $\mathrm{c}=1$; and altogether we get:

Theorem 8 Suppose F is a finite field. Then there is a prime p and positive integer d such that $|\mathrm{F}|=\mathrm{p}^{\mathrm{d}}$. And

$$
x^{p^{q}}-x=\prod_{\alpha \in F}(x-\alpha)
$$

in $\mathrm{F}[\mathrm{x}]$.

