Math200b, lecture 16

Golsefidy

Tensor product of algebras

In the previous lecture we defined an A-algebra R; we said R is called an A-algebra if there is a ring homomorphism c : $A \rightarrow Z(R)$ where $Z(R)$ is the center of R. We pointed out that in this case R is an (A, A)-bimodule. We mentioned that if R_{1} and R_{2} are two A-algebras, then $R_{1} \otimes_{A} R_{2}$ can be made into an A-algebra: it is clearly an (A, A)-bimodule, and we can define a product on $R_{1} \otimes_{A} R_{2}$ such that $\left(r_{1} \otimes r_{2}\right)\left(r_{1}^{\prime} \otimes r_{2}^{\prime}\right)=r_{1} r_{1}^{\prime} \otimes r_{2} r_{2}^{\prime}$. Here is an important example that can help us understand the algebra structure of many tensor products.

Theorem 1 Suppose R and S are unital commutative rings, and $\phi: S \rightarrow S$ is a ring homomorphism. Using ϕ, we view R as an

S-algebra. We extend ϕ to a ring homomorphism $\phi: S[x] \rightarrow R[x]$ by letting $\phi(x)=x$; that means $\phi\left(\sum_{i=0}^{\infty} a_{i} x^{i}\right)=\sum_{i=0}^{\infty} \phi\left(a_{i}\right) x^{i}$. Then $R \phi(\mathrm{I}) \unlhd \mathrm{R}[\mathrm{x}]$ and

$$
S[x] / I \otimes_{S} R \simeq R[x] / R \phi(I)
$$

Proof. We already know that $R \phi(\mathrm{I})$ is an R-module; so to see it is an $R[x]$-module, it is enough to observe that $x(R \phi(I))=$ $R \phi(x I) \subseteq R \phi(I)$.

Let $\mathrm{f}: \mathrm{S}[\mathrm{x}] / \mathrm{I} \times \mathrm{R} \rightarrow \mathrm{R}[\mathrm{x}] / \mathrm{R} \phi(\mathrm{I}), \mathrm{f}(\mathrm{p}(\mathrm{x})+\mathrm{I}, \mathrm{r}):=\mathrm{r} \phi(\mathrm{p})+\mathrm{R} \phi(\mathrm{I})$. Well-definedness.

$$
\begin{aligned}
p_{1}(x)+\mathrm{I}=p_{2}(\mathrm{x})+\mathrm{I} & \Rightarrow p_{1}-\mathrm{p}_{2} \in \mathrm{I} \\
& \Rightarrow \mathrm{r}\left(\phi\left(\mathrm{p}_{1}-\mathrm{p}_{2}\right) \in \mathrm{R} \phi(\mathrm{I})\right. \\
& \Rightarrow \mathrm{r} \phi_{1}(\mathrm{x})+\mathrm{R} \phi(\mathrm{I})=\mathrm{r} \phi_{2}(\mathrm{x})+\mathrm{R} \phi(\mathrm{I}) .
\end{aligned}
$$

Linearity in each factor is clear. And so by the universal property of tensor product, there is an abelian group homomorphism $\theta: S[x] / I \otimes_{S} R \rightarrow R[x] / R \phi(I)$ such that $\theta((p(x)+I) \otimes r)=$ $r p(x)+R \phi(I)$.

Let $\widetilde{\psi}: R[x] \rightarrow S[x] / I \otimes_{S} R, \widetilde{\psi}\left(\sum_{i=0}^{\infty} r_{i} x^{i}\right):=\sum_{i=0}^{\infty}\left(x^{i}+I\right) \otimes r_{i}$. Clearly $\widetilde{\psi}$ is a well-defined abelian group homomorphism.
$R \phi(I) \subseteq \operatorname{ker} \widetilde{\psi}$. Suppose $p(x)=\sum_{i=0}^{\infty} s_{i} x^{i} \in I$ and $r \in R$. Then

$$
\begin{aligned}
\widetilde{\psi}(r \phi(p)) & =\sum_{i=0}^{\infty}\left(x^{i}+I\right) \otimes r \phi\left(s_{i}\right) \\
& =\sum_{i=0}^{\infty} s_{i}\left(x^{i}+I\right) \otimes r \\
& =(p(x)+I) \otimes r=0
\end{aligned}
$$

And so we get an abelian group homomorphism,

$$
\begin{aligned}
& \psi: R[x] / R \phi(I) \rightarrow S[x] / I \otimes_{S} R, \\
& \psi\left(\left(\sum_{i=0}^{\infty} r_{i} x^{i}\right)+R \phi(I)\right)=\sum_{i=0}^{\infty}\left(x^{i}+I\right) \otimes r_{i} . \\
& \theta \circ \psi=i d . \\
& \theta \circ \psi\left(\left(\sum_{i=0}^{\infty} r_{i} x^{i}\right)+R \phi(I)\right)=\theta\left(\sum_{i=0}^{\infty}\left(x^{i}+I\right) \otimes r_{i}\right) \\
&=\sum_{i=0}^{\infty} r_{i} x^{i}+R \phi(I) .
\end{aligned}
$$

$$
\begin{aligned}
& \psi \circ \theta=\text { id. } \\
& \begin{aligned}
\psi \circ \theta\left(\left(\sum_{i=0}^{\infty} s_{i} x^{i}+I\right) \otimes r\right) & =\psi\left(r \phi\left(\sum_{i=0}^{\infty} s_{i} x^{i}\right)+R \phi(I)\right) \\
& =\sum_{i=0}^{\infty} \psi\left(r \phi\left(s_{i}\right) x^{i}+R \phi(I)\right) \\
& =\sum_{i=0}^{\infty}\left(x^{i}+I\right) \otimes\left(r \phi\left(s_{i}\right)\right) \\
& =\sum_{i=0}^{\infty}\left(s_{i} x^{i}+I\right) \otimes r \\
& =\left(\sum_{i=0}^{\infty} s_{i} x^{i}+I\right) \otimes r
\end{aligned}
\end{aligned}
$$

Pure tensor elements generate the tensor product as an abelian group and $\psi \circ \theta$ is an abelian group homomorphism.

Hence ψ and θ are abelian group isomorphisms.
Ring homomorphism. It is enough to show
$\theta\left(\left(\left(p_{1}+\mathrm{I}\right) \otimes \mathrm{r}_{1}\right)\left(\left(\mathrm{p}_{2}+\mathrm{I}\right) \otimes \mathrm{r}_{2}\right)\right)=\theta\left(\left(\mathrm{p}_{1}+\mathrm{I}\right) \otimes \mathrm{r}_{1}\right) \theta\left(\left(\mathrm{p}_{2}+\mathrm{I}\right) \otimes \mathrm{r}_{2}\right) ;$ and this is easy to check. Since θ is an abelian group homomorphism and pure tensor elements generate the tensor product as an abelian group, by distribution it is enough to check the
above equality to get that θ is a ring a homomorphism.
Here are some applications of Theorem 1.
Example. Show that $\mathbb{Q}[i] \otimes_{\mathbb{Q}} \mathbb{Q}[i] \simeq \mathbb{Q}[i] \oplus \mathbb{Q}[i]$ as \mathbb{Q}-algebras. Proof.

$$
\begin{aligned}
\mathbb{Q}[i] \otimes_{\mathbb{Q}} \mathbb{Q}[i] & \simeq \mathbb{Q}[x] /\left\langle x^{2}+1\right\rangle \otimes_{\mathbb{Q}} \mathbb{Q}[i] \\
& \simeq \mathbb{Q}[i][x] /\left\langle x^{2}+1\right\rangle \\
& \simeq \mathbb{Q}[i][x] /\langle(x+i)(x-i)\rangle \\
& \simeq \mathbb{Q}[i][x] /\langle x+i\rangle \oplus \mathbb{Q}[i][x] /\langle x-i\rangle \\
& \simeq \mathbb{Q}[i] \oplus \mathbb{Q}[i]
\end{aligned}
$$

(evaluation at i)
(Theorem 1)
(evaluation at $\pm i$)

Example. Show that $k[x] \otimes_{k} k[x] \simeq k[x, y]$.
Proof. $k[x] \otimes_{k} k[x] \simeq k[x] \otimes_{k} k[y] \simeq k[y][x] \simeq k[x, y]$ (the non-trivial step is because of Theorem 1 with $\mathrm{I}=0$.)

Example. Suppose A and B are commutative rings and $\phi: A \rightarrow B$ is a ring homomorphism. Then $A[x] \otimes_{A} B \simeq B[x]$.

Example. Suppose p is a prime. Then show that
$\mathbb{Z}[i] \otimes_{\mathbb{Z}} \mathbb{F}_{\mathfrak{p}} \simeq \begin{cases}\mathbb{F}_{\mathfrak{p}^{2}} & \text { if } x^{2}+1 \text { has zero in } \mathbb{F}_{\mathfrak{p}} \\ \mathbb{F}_{\mathfrak{p}} \oplus \mathbb{F}_{\mathfrak{p}} & \text { if } p \text { is odd and } x^{2}+1 \text { has a zero in } \mathbb{F}_{\mathfrak{p}} \\ \mathbb{F}_{2}[y] /\left\langle y^{2}\right\rangle & \text { if } p=2,\end{cases}$
where $\mathbb{F}_{p}=\mathbb{Z} / \mathrm{p} \mathbb{Z}$ and $\mathbb{F}_{p^{2}}$ is a field of order \mathfrak{p}^{2}.
Proof. By Theorem 1, we have

$$
\mathbb{Z}[i] \otimes_{\mathbb{Z}} \mathbb{F}_{\mathfrak{p}} \simeq \mathbb{Z}[x] /\left\langle x^{2}+1\right\rangle \otimes_{\mathbb{Z}} \mathbb{F}_{\mathfrak{p}} \simeq \mathbb{F}_{\mathfrak{p}}[x] /\left\langle x^{2}+1\right\rangle
$$

If $x^{2}+1$ has no zero in \mathbb{F}_{p}, then it is irreducible in $\mathbb{F}_{p}[x]$; and so $\left\langle\chi^{2}+1\right\rangle$ is a maximal ideal of $\mathbb{F}_{p}[x]$. Hence the factor ring is a field; and one can see that its order is p^{2}.

If $x^{2}+1$ has a zero a in \mathbb{F}_{p} and p is odd, then $-a$ is a distinct zero of $x^{2}+1$; and so $x^{2}+1=(x+a)(x-a)$ and $\operatorname{gcd}(x+a, x-a)=1$. Hence by the CRT we have

$$
\begin{aligned}
\mathbb{F}_{p}[x] /\left\langle x^{2}+1\right\rangle & =\mathbb{F}_{p}[x] /\langle(x-a)(x+a)\rangle \\
& \simeq \mathbb{F}_{p}[x] /\langle x-a\rangle \oplus \mathbb{F}_{p}[x] /\langle x+a\rangle \\
& \simeq \mathbb{F}_{p} \oplus \mathbb{F}_{p} .
\end{aligned}
$$

If $p=2$, then $x^{2}+1=(x+1)^{2}$; hence $x \mapsto y+1$ induces an isomorphism $\mathbb{F}_{2}[x] /\left\langle x^{2}+1\right\rangle \simeq \mathbb{F}_{2}[y] /\left\langle y^{2}\right\rangle$.

Field theory

If F and E are two fields and F is a subfield of E, we say E / F is a field extension. Suppose E / F is a field extension; we say $\alpha \in E$ is algebraic over F if it is a zero of a non-constant polynomial $p(x) \in F[x]$. If $\alpha \in E$ is not algebraic over F, we say α is transcendental over F.

Theorem 2 Suppose E / F is a field extension, $\alpha \in \mathrm{E}$ is algebraic over F. Then

1. there is a unique monic polynomial $m_{\alpha, F}(x) \in F[x]$ such that

$$
\operatorname{ker} \phi_{\alpha}=\left\langle\mathrm{m}_{\alpha, \mathrm{F}}(\mathrm{x})\right\rangle
$$

where $\phi_{\alpha}: F[x] \rightarrow E$ is the evaluation at α map.
2. $\mathrm{m}_{\alpha, \mathrm{F}}(\mathrm{x})$ is irreducible in $\mathrm{F}[\mathrm{x}]$.
3. The ring $\mathrm{F}[\alpha]$ generated by F and α is a field; and

$$
\mathrm{F}[\alpha] \simeq \mathrm{F}[x] /\left\langle\mathrm{m}_{\alpha, \mathrm{F}}(\mathrm{x})\right\rangle .
$$

4. $F[\alpha]=\left\{\sum_{i=0}^{d_{0}-1} a_{i} \alpha^{i} \mid a_{i} \in F\right\}$ where $d_{0}=\operatorname{deg} m_{\alpha, F}(x)$ where $\mathrm{d}_{0}:=\operatorname{deg} \mathrm{m}_{\alpha, \mathrm{F}}(\mathrm{x})$.

Proof. The evaluation map $\phi_{\alpha}: \mathrm{F}[\mathrm{x}] \rightarrow \mathrm{E}$ is a ring homomorphism. Hence $\operatorname{ker} \phi_{\alpha}$ is an ideal of $\mathrm{F}[x]$. And as $\phi_{\alpha}(1)=1 \neq 0$, $\operatorname{ker} \phi_{\alpha}$ is a proper ideal of $F[x]$. Since α is algebraic over $F, \operatorname{ker} \phi_{\alpha}$ is a non-zero ideal. Since $F[x]$ is a PID and $\operatorname{ker} \phi_{\alpha}$ is a proper ideal non-zero, there is a monic polynomial $\mathrm{m}_{\alpha, \mathrm{F}}(\mathrm{x}) \in \mathrm{F}[\mathrm{x}]$ such that $\operatorname{ker} \phi_{\alpha}=\left\langle\mathrm{m}_{\alpha, \mathrm{F}}(\mathrm{x})\right\rangle$. Notice that $\left\langle\mathrm{p}_{1}\right\rangle=\left\langle\mathrm{p}_{2}\right\rangle$ if and only if $p_{1}=\mathrm{cp}_{2}$ for some $\mathrm{c} \in \mathrm{F}[x]^{\times}=\mathrm{F}^{\times}$; and so there is a unique monic polynomial that can generate ker ϕ_{α}.

Since $\operatorname{ker} \phi_{\alpha}$ is a non-zero proper ideal, $\mathfrak{m}_{\alpha, F}(x) \notin\{0\} \cup F^{\times}$. Suppose $\mathfrak{m}_{\alpha, F}(x)=g(x) h(x)$; then $0=m_{\alpha, F}(\alpha)=g(\alpha) h(\alpha)$; and so either $g(\alpha)=0$ or $h(\alpha)=0$. W.L.O.G. let us assume that $g(\alpha)=0$. And so $g(x) \in \operatorname{ker} \phi_{\alpha}=\left\langle m_{\alpha, F}(x)\right\rangle$ which implies $\langle\mathrm{g}(\mathrm{x})\rangle \subseteq\left\langle\mathrm{m}_{\alpha, \mathrm{F}}(\mathrm{x})\right\rangle \subseteq\langle\mathrm{g}(\mathrm{x})\rangle$. Therefore $\mathrm{g}(\mathrm{x})=\mathrm{cm}_{\alpha, \mathrm{F}}(\mathrm{x})$ for some $\mathrm{c} \in \mathrm{F}^{\times}$; this implies that $\mathrm{m}_{\alpha, \mathrm{F}}(\mathrm{x})$ is irreducible in $\mathrm{F}[x]$.

By the first isomorphism theorem, $\operatorname{Im}\left(\phi_{\alpha}\right) \simeq F[x] / \operatorname{ker} \phi_{\alpha}$. By definition,

$$
\operatorname{Im}\left(\phi_{\alpha}\right)=\{f(\alpha) \mid f(x) \in F[x]\}=\left\{\sum_{i=0}^{n} f_{i} \alpha^{i} \mid f_{i} \in F, n \in \mathbb{Z}^{+}\right\} .
$$

It is easy to see that this is the smallest subring of E that contians F as a subring and α as an element; and we denote it
by $F[\alpha]$. Hence $F[\alpha] \simeq F[x] /\left\langle m_{\alpha, F}(x)\right\rangle$. Since $F[x]$ is a PID and $\mathrm{m}_{\alpha, \mathrm{F}}(\mathrm{x})$ is irreducible in $\mathrm{F}[x],\left\langle\mathrm{m}_{\alpha, \mathrm{F}}(x)\right\rangle$ is a maximal ideal of $F[x]$. Therefore $F[\alpha] \simeq F[x] /\left\langle m_{\alpha, F}(x)\right\rangle$ is a field.

For any $\beta \in F[\alpha]$, there is $f(x) \in F[x]$ such that $\beta=f(\alpha)$. By the Long Division Algorithm, there are $q(x), r(x) \in F[x]$ such that $f(x)=q(x) m_{\alpha, F}(x)+r(x)$ and $\operatorname{deg} r<\operatorname{deg} m_{\alpha, F}=d_{0}$. Hence

$$
\beta=f(\alpha)=q(\alpha) m_{\alpha, F}(\alpha)+r(\alpha)=r(\alpha)
$$

and claim follows as $\operatorname{deg} r \leq d_{0}-1$.
Lemma 3 Suppose E / F is a field extension, $\mathrm{p}(\mathrm{x}) \in \mathrm{F}[\mathrm{x}]$ is irreducible, and $\alpha \in \mathrm{E}$ is a zero of $\mathrm{p}(\mathrm{x})$. Then $\mathrm{m}_{\alpha, \mathrm{F}}(\mathrm{x})=\mathrm{cp}(\mathrm{x})$ for some $c \in F^{X}$.

Proof. Since $p(\alpha)=0, p(x) \in\left\langle\mathfrak{m}_{\alpha, \mathrm{F}}(x)\right\rangle$; and so there is $g(x) \in$ $F[x]$ such that $p(x)=m_{\alpha, F}(x) g(x)$. Since $p(x)$ is irreducible, either $\mathfrak{m}_{\alpha, F}(x)$ is a constant or $g(x)$ is constant. As $m_{\alpha, F}$ is not constant, claim follows.

Proposition 4 Suppose $p(x) \in \mathrm{F}[\mathrm{x}]$ is irreducible; then there is a field extension E / F and $\alpha \in E$ such that (1) $p(\alpha)=0$ and (2) $\mathrm{E}=\mathrm{F}[\alpha]$.

Proof. The above results imply that if there is such a field, then it should be $F[\alpha] \simeq F[x] /\left\langle m_{\alpha, F}(x)\right\rangle=F[x] /\langle p(x)\rangle$. So we let $E:=F[x] /\langle p(x)\rangle$. Since $F[x]$ is a PID and $p(x)$ is irreducible in $F[x],\langle p(x)\rangle$ is a maximal ideal of $F[x]$. Hence E is a field. Let $\alpha:=x+\langle p(x)\rangle \in E$. It is clear that E is generated by F and α as a ring (as the ring of polynomials $F[x]$ is generated by F and x as a ring). So it is enough to show $p(\alpha)=0$. Notice that we have to identify F with a subfield of E before we evaluate $p(x)$ at α; that means we send $c \in F$ to $\bar{c}:=c+\langle p(x)\rangle$. Suppose $p(x)=\sum_{i=0}^{n} c_{i} x^{i}$; then

$$
\begin{aligned}
p(\alpha) & =\sum_{i=0}^{n} \overline{c_{i}} \alpha^{i}=\sum_{i=0}^{n}\left(c_{i}+\langle p(x)\rangle\right)(x+\langle p(x)\rangle)^{i} \\
& =\sum_{i=0}^{n}\left(c_{i} x^{i}+\langle p(x)\rangle\right)=\left(\sum_{i=0}^{n} c_{i} x^{i}\right)+\langle p(x)\rangle \\
& =p(x)+\langle p(x)\rangle=0
\end{aligned}
$$

