Math200b, lecture 14

Golsefidy

Tensor product: an example.

In the previous lecture we proved various properties of tensor product of two modules. We also mentioned that in general it is not that easy to describe various algebraic aspects of a tensor product; but certain examples play central role in this regard. Here is one of them:

Proposition 1 Suppose $_AM$ is a left A-module and $\mathfrak{a} \trianglelefteq A$. Then

$$\frac{A}{\mathfrak{a}} \otimes_A M \simeq \frac{M}{\mathfrak{a}M}$$

as A-modules (or A/ α -module).

(Notice that A/a can be considered an (A/a, A)-bimodule; and since a(M/aM) = 0, M/aM can be considered a left A/a-module.)

Proof. Let $\widehat{\phi} : M \to A/\mathfrak{a} \otimes_A M$, $\widehat{\phi}(\mathfrak{m}) := 1 \otimes \mathfrak{m}$. Then $\widehat{\phi}(\mathfrak{a}_1\mathfrak{m}_1 + \mathfrak{a}_2\mathfrak{m}_2) = 1 \otimes (\mathfrak{a}_1\mathfrak{m}_1 + \mathfrak{a}_2\mathfrak{m}_2)$ (linear in M) $= (1 \otimes \mathfrak{a}_1\mathfrak{m}_1) + (1 \otimes \mathfrak{a}_2\mathfrak{m}_2)$ (A-balanced) $= ((\mathfrak{a}_1 + \mathfrak{a}) \otimes \mathfrak{m}_1) + ((\mathfrak{a}_2 + \mathfrak{a}) \otimes \mathfrak{m}_2)$ (A-linear) $= \mathfrak{a}_1(1 \otimes \mathfrak{m}_1) + \mathfrak{a}_2(1 \otimes \mathfrak{m}_2)$ $= \mathfrak{a}_1\widehat{\phi}(\mathfrak{m}_1) + \mathfrak{a}_2\widehat{\phi}(\mathfrak{m}_2).$

And so $\widehat{\phi}$ is an A-module homomorphism. Notice that for any $a \in \mathfrak{a}$ and $m \in M$ we have

$$\phi(\mathbf{a}\mathbf{m}) = 1 \otimes \mathbf{a}\mathbf{m} = (\mathbf{a} + \mathbf{a}) \otimes \mathbf{m} = 0 \otimes \mathbf{m} = 0.$$

Hence $\mathfrak{a}M \subseteq \ker \widehat{\phi}$; and so

$$\phi: \mathcal{M}/\mathfrak{a}\mathcal{M} \to \mathcal{A}/\mathfrak{a} \otimes_{\mathcal{A}} \mathcal{M}, \phi(\mathfrak{m} + \mathfrak{a}\mathcal{M}) := 1 \otimes \mathfrak{m}$$

is a well-defined (injective) A-module homomorphism. Next we use the universal property of tensor product to define an A-module homomorphism in the other direction. Let $f : A/a \times M \to M/aM$, f(a + a, m) := am + aM. Well-definedness. Suppose a + a = a' + a; then

$$a - a' \in a \Rightarrow (a - a')m \in aM \Rightarrow am - a'm \in aM.$$

It is even easier to check that f is A-balanced, A-linear in A/a, and linear in M. Hence by the universal property of tensor product, there is

$$\psi: A/\mathfrak{a} \otimes_A M \to M/\mathfrak{a} M, \psi((\mathfrak{a}+\mathfrak{a}) \otimes \mathfrak{m}) = \mathfrak{f}(\mathfrak{a}+\mathfrak{a}, \mathfrak{m}) = \mathfrak{a} \mathfrak{m}+\mathfrak{a} M.$$

And so $\phi(\psi((a + a) \otimes m)) = (a + a) \otimes m$; since pure tensor elements generate the considered tensor product, $\phi \circ \psi$ is identity. We also have that $\phi \circ \psi$ is identity; hence ϕ and ψ are isomorphisms.

Example. Show that $\mathbb{Z}/n\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}/m\mathbb{Z} \simeq \mathbb{Z}/\gcd(\mathfrak{m},\mathfrak{n})\mathbb{Z}$ (as abelian groups).

Proof. By the previous proposition,

$$\mathbb{Z}/n\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}/m\mathbb{Z} \simeq \frac{\mathbb{Z}/m\mathbb{Z}}{n(\mathbb{Z}/m\mathbb{Z})}$$
$$= \frac{\mathbb{Z}/m\mathbb{Z}}{(n\mathbb{Z} + m\mathbb{Z})/m\mathbb{Z}}$$
$$= \frac{\mathbb{Z}/m\mathbb{Z}}{\gcd(m, n)\mathbb{Z}/m\mathbb{Z}}$$
$$\simeq \frac{\mathbb{Z}}{\gcd(m, n)\mathbb{Z}}.$$

Example. $f : M \rightarrow A \otimes_A M$, $f(m) := 1 \otimes m$ is an A-module isomorphism. (This is an immediate consequence of the above proposition; for a = 0.)

Base change.

Suppose $\phi : A \rightarrow B$ is a ring homomorphism; then B can be viewed as an (B, A)-bimodule: for $a \in A, b \in B$ and $x \in B$, let $x \cdot a := x\theta(a)$ and $b \cdot x := bx$. So for any left A-module M, we get a left B-module $B \otimes_A M$. We will see that it is in fact a functor from **left A-mod** to **left B-mod**. This is called a base change. Usually going the other direction is much harder; starting with a B-module and trying to realize it as a base change of an A-module. This type of result is called descent. For instance when F is a subfield of E and θ : F \hookrightarrow E is the embedding F into E, this is part of Galois descent.

Tensor product as a functor.

Suppose ${}_{A}M_{B}$ is an (A, B)-bimodule; then for any left Bmodule N we get a left A-module M \otimes_{B} N. Can we make this into a functor from **left B-mod** to **left A-mod**? To get a functor, we have to say what it does to homomorphisms. We prove a stronger statement in this regard.

Proposition 2 Suppose $f \in Hom_{(A,B)}(M, M')$ and $g \in Hom_B(N, N')$; then there is a unique element of $Hom_A(M \otimes_B N, M' \otimes_B N')$ which sends $m \otimes n$ to $f(m) \otimes g(n)$. We denote this homomorphism by $f \otimes g$.

Proof. We start with a B-balanced, A-linear in M, and linear in N, function from $M \times N$ to $M' \otimes_B N'$; and then use the universal property of tensor product to get the desired A-module homomorphism. Let

$$l: M \times N \to M' \otimes_B N', l(m, n) := f(m) \otimes g(n).$$

B-balanced.

$$\begin{split} \mathfrak{l}(\mathfrak{m} \cdot \mathfrak{b}, \mathfrak{n}) =& \mathsf{f}(\mathfrak{m} \cdot \mathfrak{b}) \otimes \mathfrak{g}(\mathfrak{n}) & (\text{right B-module hom}) \\ =& (\mathfrak{f}(\mathfrak{m}) \cdot \mathfrak{b}) \otimes \mathfrak{g}(\mathfrak{n}) & (\text{B-balanced}) \\ =& \mathsf{f}(\mathfrak{m}) \otimes (\mathfrak{b} \cdot \mathfrak{g}(\mathfrak{n})) & (\text{left B-module hom}) \\ =& \mathsf{f}(\mathfrak{m}) \otimes \mathfrak{g}(\mathfrak{b} \cdot \mathfrak{n}) \\ =& \mathfrak{l}(\mathfrak{m}, \mathfrak{b} \cdot \mathfrak{n}). \end{split}$$

A-linear in M.

$$\begin{split} l(a_1m_1 + a_2m_2, n) =& f(a_1m_1 + a_2m_2) \otimes g(n) \\ =& (a_1f(m_1) + a_2f(m_2)) \otimes g(n) \\ =& a_1(f(m_1) \otimes g(n)) + a_2(f(m_2) \otimes g(n)) \\ =& a_1l(m_1, n) + a_2l(m_2, n). \end{split}$$

Linear in N.

$$\begin{split} \mathfrak{l}(\mathfrak{m},\mathfrak{n}_{1}+\mathfrak{n}_{2}) =& \mathsf{f}(\mathfrak{m})\otimes \mathfrak{g}(\mathfrak{n}_{1}+\mathfrak{n}_{2}) \\ =& \mathsf{f}(\mathfrak{m})\otimes (\mathfrak{g}(\mathfrak{n}_{1})+\mathfrak{g}(\mathfrak{n}_{2})) \\ =& \mathsf{f}(\mathfrak{m})\otimes \mathfrak{g}(\mathfrak{n}_{1})+\mathfrak{f}(\mathfrak{m})\otimes \mathfrak{g}(\mathfrak{n}_{2}) \\ =& \mathfrak{l}(\mathfrak{m},\mathfrak{n}_{1})+\mathfrak{l}(\mathfrak{m},\mathfrak{n}_{2}). \end{split}$$

Hence by the universal property of tensor product there is a unique A-module homomorphism $\hat{l} : M \otimes_B N \to M' \otimes_B N'$ such that $\hat{l}(m \otimes n) = l(m, n) = f(m) \otimes g(n)$.

Theorem 3 Suppose ${}_AM_B$ is an (A, B)-bimodule; then

$T_{\mathcal{M}}: \textbf{left} \; B\textbf{-} \, \textbf{mod} \rightarrow \textbf{left} \; A\textbf{-} \, \textbf{mod}$

is a functor where for any left B-module N, $T_M(N) := M \otimes_B N$ and for any $f \in Hom_B(N, N')$, $T_M(f) := id_M \otimes f$.

Proof. We have already showed that $T_M(N)$ is a left A-module, and $T_M(f) \in Hom_A(M \otimes_B N, M \otimes_B N')$. So it is enough to show $T_M(f_1 \circ f_2) = T_M(f_1) \circ T_M(f_2)$ and $T_M(id_N) = id_{T_M(N)}$. Since pure tensor elements generate tensor product and $T_M(f_1 \circ f_2)$, $T_M(f_1) \circ T_M(f_2)$, and $T_M(id_N)$ are A-module homomorphisms, it is enough to check the claim equalities for pure tensor elements.

$$\begin{aligned} (\mathsf{T}_{\mathsf{M}}(\mathsf{f}_1) \circ \mathsf{T}_{\mathsf{M}}(\mathsf{f}_2))(\mathfrak{m} \otimes \mathfrak{n}) =& \mathsf{T}_{\mathsf{M}}(\mathsf{f}_1)((\mathrm{id}_{\mathsf{M}} \otimes \mathsf{f}_2)(\mathfrak{m} \otimes \mathfrak{n})) \\ =& (\mathrm{id}_{\mathsf{M}} \otimes \mathsf{f}_1)(\mathfrak{m} \otimes \mathsf{f}_2(\mathfrak{n})) \\ =& \mathfrak{m} \otimes \mathsf{f}_1(\mathsf{f}_2(\mathfrak{n})) \\ =& \mathsf{T}_{\mathsf{M}}(\mathsf{f}_1 \circ \mathsf{f}_2)(\mathfrak{m} \otimes \mathfrak{n}). \end{aligned}$$

And $T_M(id_N)(\mathfrak{m} \otimes \mathfrak{n}) = (id_M \otimes id_N)(\mathfrak{m} \otimes \mathfrak{n}) = \mathfrak{m} \otimes \mathfrak{n}.$

Tensor functor is right exact.

We have seen that $\mathbb{Q}/\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Q} = 0$; this shows that $T_{\mathbb{Q}/\mathbb{Z}}(j) = 0$ where $j : \mathbb{Z} \hookrightarrow \mathbb{Q}$. Notice that $T_{\mathbb{Q}/\mathbb{Z}}(\mathbb{Z}) = \mathbb{Q}/\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z} \simeq \mathbb{Q}/\mathbb{Z}$; and so $T_{\mathbb{Q}/\mathbb{Z}}(j)$ is not injective though j is injective. So T_M is not necessarily left exact.

Theorem 4 (Tensor defines a right exact functor) Suppose $_AM_B$ *is an* (A, B)-*bimodule; then*

$\mathsf{T}_{_{\!\!A}\mathcal{M}_{_{\!B}}}:\mathbf{left}\;B^{_{\!\!}}\mathbf{mod}\longrightarrow\mathbf{left}\;A^{_{\!\!}}\mathbf{mod}$

is a right exact functor. (We often write T_M instead of T_{AM_B} .)

Proof. Suppose $0 \to N_1 \xrightarrow{f_1} N_2 \xrightarrow{f_2} N_3 \to 0$ is a S.E.S. of left B-modules. Then $0 \to T_M(N_1) \xrightarrow{T_M(f_1)} T_M(N_2) \xrightarrow{T_M(f_2)} T_M(N_3) \to 0$ is a sequence of A-modules and A-module homomorphisms. Since $T_M(f_2) \circ T_M(f_1) = T_M(f_2 \circ f_1) = 0$, (it is a chain of A-modules and) $\operatorname{Im}(T_M(f_1)) \subseteq \ker T_M(f_2)$. So there is an A-module homomorphism

 $\theta: T_{\mathsf{M}}(\mathsf{N}_2)/\mathrm{Im}(\mathsf{T}_{\mathsf{M}}(\mathsf{f}_1)) \to T_{\mathsf{M}}(\mathsf{N}_3), \theta([x]) = T_{\mathsf{M}}(\mathsf{f}_2)(x),$

where $[x] := x + \operatorname{Im}(T_M(f_1))$; in particular $\theta([\mathfrak{m} \otimes \mathfrak{n}_2]) = \mathfrak{m} \otimes f_2(\mathfrak{n}_2)$ where $[x] := x + \operatorname{Im}(T_M(f_1))$.

It is enough to show θ is an isomorphism.

By showing θ is an isomorphism, we deduce that θ is injective; and so ker $T_M(f_2) = Im(T_M(f_1))$. And surjectivity of θ implies that $T_M(f_2)$ is surjective.

To show θ is an isomorphism we will show that it has an inverse. We start by defining a suitable function from $M \times N_3$ to $T_M(N_2)/Im(T_M(f_1))$; and then we use the universal property of tensor product in order to find the inverse of θ .

Let $l : M \times N_3 \rightarrow T_M(N_2)/Im(T_M(f_1)), l(m, n_3) := [m \otimes n_2]$ where $n_2 \in f_2^{-1}(n_3)$. Well-definedness. Suppose $f_2(n_2) = f_2(n'_2)$; then $n_2 - n'_2 \in$ ker $f_2 = Im(f_1)$. Hence $m \otimes n_2 - m \otimes n'_2 \in Im(T_M(f_1))$; and so $[m \otimes n_2] = [m \otimes n'_2]$, which implies that l is well-defined.

B-balanced.

$$\begin{split} \mathfrak{l}(\mathfrak{m} \cdot \mathfrak{b}, \mathfrak{n}_3) =& [(\mathfrak{m} \cdot \mathfrak{b}) \otimes \mathfrak{n}_2] \\ =& [\mathfrak{m} \otimes \mathfrak{b} \cdot \mathfrak{n}_2] \quad (\text{since } \mathfrak{f}_2(\mathfrak{b} \cdot \mathfrak{n}_2) = \mathfrak{b} \cdot \mathfrak{f}_2(\mathfrak{n}_2) = \mathfrak{b} \cdot \mathfrak{n}_3) \\ =& \mathfrak{l}(\mathfrak{m}, \mathfrak{n} \cdot \mathfrak{n}_3). \end{split}$$

A-linear in M and linear in N_3 are clear.

Hence by the universal property of tensor product, there is an A-module homomorphism

 $\psi: M \otimes_B N_3 \to T_M(N_2)/\mathrm{Im}(T_M(f_1)), \psi(\mathfrak{m} \otimes \mathfrak{n}_3) = [\mathfrak{m} \otimes \mathfrak{n}_2],$ where $f_2(\mathfrak{n}_2) = \mathfrak{n}_3$. Notice that

 $\theta \circ \psi(\mathfrak{m} \otimes \mathfrak{n}_3) = \theta([\mathfrak{m} \otimes \mathfrak{n}_2]) = \mathfrak{m} \otimes \mathfrak{f}_2(\mathfrak{n}_2) = \mathfrak{m} \otimes \mathfrak{n}_3,$

for any $m \in M$ and n_3 . As pure tensor elements generate the tensor product as an A-module, we deduce that $\theta \circ \psi$ is identity. We also have

 $\psi \circ \theta([\mathfrak{m} \otimes \mathfrak{n}_2]) = \psi(\mathfrak{m} \otimes \mathfrak{f}_2(\mathfrak{n}_2)) = [\mathfrak{m} \otimes \mathfrak{n}_2];$

and so $\psi \circ \theta$ is also identity. Therefore θ is an isomorphism.

Corollary 5 (Flat modules) Suppose ${}_{A}M_{B}$ is an (A, B)-bimodule. Then the functor T_{M} is an exact functor if and only if $T_{M}(f)$ is injective for any injective homomorphism f. In this case, we say M is a flat B-module.

Remark. As you can see, in the above definition, we say *M* is a flat B-module and there is no mention of *A*. This might need a justification that you will see in your HW assignment. Here is the statement that you will prove: there is a natural isomorphism between the functors

$$\mathbf{left } \mathbf{B}\operatorname{-\mathbf{mod}} \xrightarrow{\mathsf{T}_{A}\mathsf{M}_{B}} \mathbf{left } \mathbf{A}\operatorname{-\mathbf{mod}} \xrightarrow{\mathsf{F}} \mathbf{Ab}$$

and

$$\mathbf{left} \ \mathsf{B}\text{-}\mathbf{mod} \xrightarrow{\mathsf{T}_{\mathbb{Z}^{\mathsf{M}_{\mathsf{B}}}}} \mathbf{Ab}$$

where F is the forgetful functor. Hence $F \circ T_{AM_B}$ is exact if and only if T_{ZM_B} is exact. On the other hand, exactness of a sequence of modules is determined at the level of abelian groups; hence $F \circ T_{AM_B}$ is exact if and only if T_{AM_B} is exact. So overall we get

T_{AM_B} is exact $\Leftrightarrow T_{ZM_B}$ is exact.

And so flatness of M just depends on its B-module structure and is independent of its A-module structure.