
Math200b, lecture 14

Golsefidy

Tensor product: an example.

In the previous lecture we proved various properties of
tensor product of two modules. We also mentioned that in
general it is not that easy to describe various algebraic aspects
of a tensor product; but certain examples play central role in
this regard. Here is one of them:

Proposition 1 Suppose AM is a left A-module and a EA. Then

A

a
⊗AM '

M

aM

as A-modules (or A/a-module).
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(Notice thatA/a can be considered an (A/a,A)-bimodule; and
since a(M/aM) � 0, M/aM can be considered a left A/a-
module.)

Proof. Let φ̂ : M→ A/a ⊗AM, φ̂(m) :� 1 ⊗m. Then

φ̂(a1m1 + a2m2) �1 ⊗ (a1m1 + a2m2) (linear inM)

�(1 ⊗ a1m1) + (1 ⊗ a2m2) (A-balanced)

�((a1 + a) ⊗m1) + ((a2 + a) ⊗m2) (A-linear)

�a1(1 ⊗m1) + a2(1 ⊗m2)
�a1φ̂(m1) + a2φ̂(m2).

And so φ̂ is anA-module homomorphism. Notice that for any
a ∈ a andm ∈Mwe have

φ̂(am) � 1 ⊗ am � (a + a) ⊗m � 0 ⊗m � 0.

Hence aM ⊆ ker φ̂; and so

φ : M/aM→ A/a ⊗AM,φ(m + aM) :� 1 ⊗m

is a well-defined (injective) A-module homomorphism. Next
we use the universal property of tensor product to define an
A-module homomorphism in the other direction.
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Let f : A/a ×M→M/aM, f(a + a,m) :� am + aM.
Well-definedness. Suppose a + a � a′ + a; then

a − a′ ∈ a ⇒ (a − a′)m ∈ aM⇒ am − a′m ∈ aM.

It is even easier to check that f is A-balanced, A-linear in A/a,
and linear in M. Hence by the universal property of tensor
product, there is

ψ : A/a⊗AM→M/aM,ψ((a+a)⊗m) � f(a+a,m) � am+aM.

And so φ(ψ((a+ a) ⊗m)) � (a+ a) ⊗m; since pure tensor ele-
ments generate the considered tensor product,φ◦ψ is identity.
We also have that φ ◦ψ is identity; hence φ and ψ are isomor-
phisms. �

Example. Show that �/n� ⊗� �/m� ' �/gcd(m,n)� (as
abelian groups).
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Proof. By the previous proposition,

�/n� ⊗� �/m� '
�/m�
n(�/m�)

�
�/m�

(n� +m�)/m�

�
�/m�

gcd(m,n)�/m�
' �

gcd(m,n)�.

�

Example. f : M→ A ⊗AM, f(m) :� 1 ⊗m is an A-module
isomorphism. (This is an immediate consequence of the above
proposition; for a � 0.)

Base change.

Suppose φ : A → B is a ring homomorphism; then B can
be viewed as an (B,A)-bimodule: for a ∈ A,b ∈ B and x ∈ B,
let x · a :� xθ(a) and b · x :� bx. So for any left A-moduleM,
we get a left B-module B ⊗AM. We will see that it is in fact a
functor from left A-mod to left B-mod. This is called a base
change. Usually going the other direction is much harder;
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starting with a B-module and trying to realize it as a base
change of an A-module. This type of result is called descent.
For instance when F is a subfield of E and θ : F ↪→ E is the
embedding F into E, this is part of Galois descent.

Tensor product as a functor.

Suppose AMB is an (A,B)-bimodule; then for any left B-
module N we get a left A-moduleM ⊗B N. Can we make this
into a functor from leftB-mod to leftA-mod? To get a functor,
we have to say what it does to homomorphisms. We prove a
stronger statement in this regard.

Proposition 2 Suppose f ∈ Hom(A,B)(M,M′) andg ∈ HomB(N,N′);
then there is a unique element of HomA(M ⊗B N,M′ ⊗B N′) which
sends m ⊗ n to f(m) ⊗ g(n). We denote this homomorphism by
f ⊗ g.

Proof. We start with a B-balanced, A-linear in M, and linear
in N, function from M × N to M′ ⊗B N′; and then use the
universal property of tensor product to get the desired A-
module homomorphism. Let
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l : M ×N→M′ ⊗B N′, l(m,n) :� f(m) ⊗ g(n).

B-balanced.

l(m · b,n) �f(m · b) ⊗ g(n) (right B-module hom)

�(f(m) · b) ⊗ g(n) (B-balanced)

�f(m) ⊗ (b · g(n)) (left B-module hom)

�f(m) ⊗ g(b · n)
�l(m,b · n).

A-linear inM.

l(a1m1 + a2m2,n) �f(a1m1 + a2m2) ⊗ g(n)
�(a1f(m1) + a2f(m2)) ⊗ g(n)
�a1(f(m1) ⊗ g(n)) + a2(f(m2) ⊗ g(n))
�a1l(m1,n) + a2l(m2,n).
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Linear in N.

l(m,n1 + n2) �f(m) ⊗ g(n1 + n2)
�f(m) ⊗ (g(n1) + g(n2))
�f(m) ⊗ g(n1) + f(m) ⊗ g(n2)
�l(m,n1) + l(m,n2).

Hence by the universal property of tensor product there is a
unique A-module homomorphism l̂ : M ⊗B N → M′ ⊗B N′

such that l̂(m ⊗ n) � l(m,n) � f(m) ⊗ g(n). �

Theorem 3 Suppose AMB is an (A,B)-bimodule; then

TM : left B-mod→ left A-mod

is a functor where for any left B-module N, TM(N) :�M ⊗B N and
for any f ∈ HomB(N,N′), TM(f) :� idM ⊗ f.

Proof. We have already showed that TM(N) is a left A-module,
and TM(f) ∈ HomA(M ⊗BN,M ⊗BN′). So it is enough to show
TM(f1 ◦ f2) � TM(f1) ◦ TM(f2) and TM(idN) � idTM(N). Since
pure tensor elements generate tensor product and TM(f1 ◦ f2),
TM(f1) ◦ TM(f2), and TM(idN) are A-module homomorphisms,
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it is enough to check the claim equalities for pure tensor ele-
ments.

(TM(f1) ◦ TM(f2))(m ⊗ n) �TM(f1)((idM ⊗ f2)(m ⊗ n))
�(idM ⊗ f1)(m ⊗ f2(n))
�m ⊗ f1(f2(n))
�TM(f1 ◦ f2)(m ⊗ n).

And TM(idN)(m ⊗ n) � (idM ⊗ idN)(m ⊗ n) � m ⊗ n. �

Tensor functor is right exact.

Wehave seen that�/�⊗�� � 0; this shows that T�/�(j) � 0

where j : � ↪→ �. Notice that T�/�(�) � �/� ⊗� � ' �/�;
and so T�/�(j) is not injective though j is injective. So TM is not
necessarily left exact.

Theorem 4 (Tensor defines a right exact functor) SupposeAMB

is an (A,B)-bimodule; then

TAMB : left B- mod→ left A- mod

is a right exact functor. (We often write TM instead of TAMB.)
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Proof. Suppose 0→ N1
f1−→ N2

f2−→ N3 → 0 is a S.E.S. of left B-

modules. Then 0→ TM(N1)
TM(f1)−−−−→ TM(N2)

TM(f2)−−−−→ TM(N3) → 0

is a sequence of A-modules and A-module homomorphisms.
Since TM(f2) ◦ TM(f1) � TM(f2 ◦ f1) � 0, (it is a chain of A-
modules and) Im(TM(f1)) ⊆ ker TM(f2). So there is anA-module
homomorphism

θ : TM(N2)/Im(TM(f1)) → TM(N3), θ([x]) � TM(f2)(x),

where [x] :� x + Im(TM(f1)); in particular θ([m ⊗ n2]) � m ⊗
f2(n2)where [x] :� x + Im(TM(f1)).

It is enough to show θ is an isomorphism.
By showing θ is an isomorphism, we deduce that θ is in-

jective; and so ker TM(f2) � Im(TM(f1)). And surjectivity of θ
implies that TM(f2) is surjective.

To show θ is an isomorphism we will show that it has an
inverse. We start by defining a suitable function fromM ×N3

to TM(N2)/Im(TM(f1)); and then we use the universal property
of tensor product in order to find the inverse of θ.

Let l : M ×N3 → TM(N2)/Im(TM(f1)), l(m,n3) :� [m ⊗ n2]
where n2 ∈ f−1

2 (n3).
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Well-definedness. Suppose f2(n2) � f2(n′2); then n2 − n′2 ∈
ker f2 � Im(f1). Hence m ⊗ n2 −m ⊗ n′2 ∈ Im(TM(f1)); and so
[m ⊗ n2] � [m ⊗ n′2], which implies that l is well-defined.
B-balanced.

l(m · b,n3) �[(m · b) ⊗ n2]
�[m ⊗ b · n2] (since f2(b · n2) � b · f2(n2) � b · n3)

�l(m,n · n3).

A-linear inM and linear in N3 are clear.
Hence by the universal property of tensor product, there is

an A-module homomorphism

ψ : M ⊗B N3→ TM(N2)/Im(TM(f1)),ψ(m ⊗ n3) � [m ⊗ n2],

where f2(n2) � n3. Notice that

θ ◦ψ(m ⊗ n3) � θ([m ⊗ n2]) � m ⊗ f2(n2) � m ⊗ n3,

for any m ∈ M and n3. As pure tensor elements generate
the tensor product as an A-module, we deduce that θ ◦ ψ is
identity. We also have

ψ ◦ θ([m ⊗ n2]) � ψ(m ⊗ f2(n2)) � [m ⊗ n2];

and soψ◦θ is also identity. Therefore θ is an isomorphism. �
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Corollary 5 (Flat modules) Suppose AMB is an (A,B)-bimodule.
Then the functor TM is an exact functor if and only if TM(f) is injective
for any injective homomorphism f. In this case, we sayM is a flat
B-module.

Remark. As you can see, in the above definition, we say M
is a flat B-module and there is no mention of A. This might
need a justification that you will see in your HW assignment.
Here is the statement that you will prove: there is a natural
isomorphism between the functors

left B-mod left A-mod Ab
T
AMB

F◦T
AMB

F

and
left B-mod

T
�MB−−−−→ Ab

where F is the forgetful functor. Hence F ◦ TAMB is exact if
and only if T

�MB is exact. On the other hand, exactness of
a sequence of modules is determined at the level of abelian
groups; hence F ◦ TAMB is exact if and only if TAMB is exact. So
overall we get
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TAMB is exact⇔ T
�MB is exact.

And so flatness ofM just depends on its B-module structure
and is independent of its A-module structure.
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