Math200b, lecture 14

Golsefidy

Tensor product: an example.

In the previous lecture we proved various properties of tensor product of two modules. We also mentioned that in general it is not that easy to describe various algebraic aspects of a tensor product; but certain examples play central role in this regard. Here is one of them:

Proposition 1 Suppose $_{A} M$ is a left A-module and $\mathfrak{a} \unlhd A$. Then

$$
\frac{A}{\mathfrak{a}} \otimes_{\mathrm{A}} M \simeq \frac{M}{\mathfrak{a} M}
$$

as A-modules (or A/a-module).
(Notice that $\mathcal{A} / \mathfrak{a}$ can be considered an $(\mathcal{A} / \mathfrak{a}, \mathcal{A})$-bimodule; and since $\mathfrak{a}(M / \mathfrak{a} M)=0, M / \mathfrak{a} M$ can be considered a left A / \mathfrak{a} module.)

$$
\begin{aligned}
& \text { Proof. Let } \widehat{\phi}: M \rightarrow A / a \otimes_{A} M, \widehat{\phi}(\mathfrak{m}):=1 \otimes m \text {. Then } \\
& \widehat{\phi}\left(a_{1} m_{1}+a_{2} m_{2}\right)=1 \otimes\left(a_{1} m_{1}+a_{2} m_{2}\right) \\
& =\left(1 \otimes a_{1} m_{1}\right)+\left(1 \otimes a_{2} m_{2}\right) \\
& =\left(\left(a_{1}+\mathfrak{a}\right) \otimes \mathfrak{m}_{1}\right)+\left(\left(a_{2}+\mathfrak{a}\right) \otimes \mathfrak{m}_{2}\right) \\
& =a_{1}\left(1 \otimes \mathfrak{m}_{1}\right)+a_{2}\left(1 \otimes \mathfrak{m}_{2}\right) \\
& =a_{1} \widehat{\phi}\left(m_{1}\right)+a_{2} \widehat{\phi}\left(m_{2}\right) \text {. } \\
& \text { (linear in } M \text {) } \\
& \text { (A-balanced) } \\
& \text { (A-linear) }
\end{aligned}
$$

And so $\widehat{\phi}$ is an A-module homomorphism. Notice that for any $a \in \mathfrak{a}$ and $\mathfrak{m} \in M$ we have

$$
\widehat{\phi}(a m)=1 \otimes a m=(a+\mathfrak{a}) \otimes m=0 \otimes m=0 .
$$

Hence $\mathfrak{a} M \subseteq \operatorname{ker} \widehat{\phi}$; and so

$$
\phi: M / a M \rightarrow A / a \otimes_{A} M, \phi(m+a M):=1 \otimes m
$$

is a well-defined (injective) A-module homomorphism. Next we use the universal property of tensor product to define an A-module homomorphism in the other direction.

Let $\mathfrak{f}: A / a \times M \rightarrow M / \mathfrak{a} M, f(a+\mathfrak{a}, \mathfrak{m}):=a \mathfrak{m}+\mathfrak{a} M$.
Well-definedness. Suppose $a+\mathfrak{a}=a^{\prime}+\mathfrak{a}$; then

$$
\mathfrak{a}-\mathfrak{a}^{\prime} \in \mathfrak{a} \Rightarrow\left(\mathfrak{a}-\mathfrak{a}^{\prime}\right) \mathfrak{m} \in \mathfrak{a} M \Rightarrow a \mathfrak{m}-\mathfrak{a}^{\prime} \mathfrak{m} \in \mathfrak{a} M
$$

It is even easier to check that f is A-balanced, A-linear in A / a, and linear in M. Hence by the universal property of tensor product, there is
$\psi: A / a \otimes_{\mathcal{A}} M \rightarrow M / \mathfrak{a} M, \psi((a+\mathfrak{a}) \otimes m)=f(a+\mathfrak{a}, m)=a m+a M$.
And so $\phi(\psi((a+\mathfrak{a}) \otimes m))=(a+\mathfrak{a}) \otimes m$; since pure tensor elements generate the considered tensor product, $\phi \circ \psi$ is identity. We also have that $\phi \circ \psi$ is identity; hence ϕ and ψ are isomorphisms.

Example. Show that $\mathbb{Z} / n \mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z} / m \mathbb{Z} \simeq \mathbb{Z} / \operatorname{gcd}(m, n) \mathbb{Z}$ (as abelian groups).

Proof. By the previous proposition,

$$
\begin{aligned}
& \mathbb{Z} / \mathrm{n} \mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z} / \mathrm{m} \mathbb{Z} \simeq \frac{\mathbb{Z} / \mathrm{m} \mathbb{Z}}{\mathrm{n}(\mathbb{Z} / \mathrm{m} \mathbb{Z})} \\
&=\frac{\mathbb{Z} / \mathrm{m} \mathbb{Z}}{(\mathrm{n} \mathbb{Z}+\mathrm{m} \mathbb{Z}) / \mathrm{m} \mathbb{Z}} \\
&=\frac{\mathbb{Z} / \mathrm{m} \mathbb{Z}}{\operatorname{gcd}(\mathrm{~m}, \mathrm{n}) \mathbb{Z} / \mathrm{m} \mathbb{Z}} \\
& \simeq \frac{\mathbb{Z}}{\operatorname{gcd}(\mathrm{~m}, \mathfrak{n}) \mathbb{Z}}
\end{aligned}
$$

Example. $f: M \rightarrow A \otimes_{A} M, f(m):=1 \otimes m$ is an A-module isomorphism. (This is an immediate consequence of the above proposition; for $\mathfrak{a}=0$.)

Base change.

Suppose $\phi: A \rightarrow B$ is a ring homomorphism; then B can be viewed as an (B, A)-bimodule: for $a \in A, b \in B$ and $x \in B$, let $x \cdot a:=x \theta(a)$ and $b \cdot x:=b x$. So for any left A-module M, we get a left B-module $B \otimes_{\mathrm{A}} M$. We will see that it is in fact a functor from left A-mod to left B-mod. This is called a base change. Usually going the other direction is much harder;
starting with a B-module and trying to realize it as a base change of an A -module. This type of result is called descent. For instance when F is a subfield of E and $\theta: F \hookrightarrow E$ is the embedding F into E, this is part of Galois descent.

Tensor product as a functor.

Suppose ${ }_{A} M_{B}$ is an (A, B)-bimodule; then for any left Bmodule N we get a left A-module $M \otimes_{B} N$. Can we make this into a functor from left B-mod to left A-mod? To get a functor, we have to say what it does to homomorphisms. We prove a stronger statement in this regard.

Proposition 2 Suppose $f \in \operatorname{Hom}_{(A, B)}\left(M, M^{\prime}\right)$ and $g \in \operatorname{Hom}_{B}\left(N, N^{\prime}\right)$; then there is a unique element of $\operatorname{Hom}_{A}\left(M \otimes_{B} N, M^{\prime} \otimes_{B} N^{\prime}\right)$ which sends $\mathrm{m} \otimes \mathrm{n}$ to $\mathrm{f}(\mathrm{m}) \otimes \mathrm{g}(\mathfrak{n})$. We denote this homomorphism by $\mathrm{f} \otimes \mathrm{g}$.

Proof. We start with a B-balanced, A-linear in M, and linear in N, function from $M \times N$ to $M^{\prime} \otimes_{B} N^{\prime}$; and then use the universal property of tensor product to get the desired A module homomorphism. Let

$$
l: M \times N \rightarrow M^{\prime} \otimes_{B} N^{\prime}, l(m, n):=f(m) \otimes g(n)
$$

B-balanced.

$$
\begin{aligned}
l(m \cdot b, n) & =f(m \cdot b) \otimes g(n) \\
& =(f(m) \cdot b) \otimes g(n) \\
& =f(m) \otimes(b \cdot g(n)) \\
& =f(m) \otimes g(b \cdot n) \\
& =l(m, b \cdot n)
\end{aligned}
$$

A-linear in M.

$$
\begin{aligned}
l\left(a_{1} m_{1}+a_{2} m_{2}, n\right) & =f\left(a_{1} m_{1}+a_{2} m_{2}\right) \otimes g(n) \\
& =\left(a_{1} f\left(m_{1}\right)+a_{2} f\left(m_{2}\right)\right) \otimes g(n) \\
& =a_{1}\left(f\left(m_{1}\right) \otimes g(n)\right)+a_{2}\left(f\left(m_{2}\right) \otimes g(n)\right) \\
& =a_{1} l\left(m_{1}, n\right)+a_{2} l\left(m_{2}, n\right)
\end{aligned}
$$

Linear in N .

$$
\begin{aligned}
l\left(m, n_{1}+n_{2}\right) & =f(m) \otimes g\left(n_{1}+n_{2}\right) \\
& =f(m) \otimes\left(g\left(n_{1}\right)+g\left(n_{2}\right)\right) \\
& =f(m) \otimes g\left(n_{1}\right)+f(m) \otimes g\left(n_{2}\right) \\
& =l\left(m, n_{1}\right)+l\left(m, n_{2}\right) .
\end{aligned}
$$

Hence by the universal property of tensor product there is a unique A-module homomorphism $\widehat{l}: M \otimes_{B} N \rightarrow M^{\prime} \otimes_{B} N^{\prime}$ such that $\widehat{l}(m \otimes n)=l(m, n)=f(m) \otimes g(n)$.

Theorem 3 Suppose ${ }_{A} M_{B}$ is an (A, B)-bimodule; then

$T_{M}:$ left $B-\bmod \rightarrow$ left $A-\bmod$

is a functor where for any left $\mathrm{B}-$ module $\mathrm{N}, \mathrm{T}_{\mathrm{M}}(\mathrm{N}):=\mathrm{M} \otimes_{\mathrm{B}} \mathrm{N}$ and for any $f \in \operatorname{Hom}_{B}\left(N, N^{\prime}\right), T_{M}(f):=i d_{M} \otimes f$.

Proof. We have already showed that $T_{M}(N)$ is a left A-module, and $T_{M}(f) \in \operatorname{Hom}_{A}\left(M \otimes_{B} N, M \otimes_{B} N^{\prime}\right)$. So it is enough to show $T_{M}\left(f_{1} \circ f_{2}\right)=T_{M}\left(f_{1}\right) \circ T_{M}\left(f_{2}\right)$ and $T_{M}\left(\mathrm{id}_{N}\right)=\operatorname{id}_{T_{M}(N)}$. Since pure tensor elements generate tensor product and $T_{M}\left(f_{1} \circ f_{2}\right)$, $T_{M}\left(f_{1}\right) \circ T_{M}\left(f_{2}\right)$, and $T_{M}\left(i d_{N}\right)$ are A-module homomorphisms,
it is enough to check the claim equalities for pure tensor elements.

$$
\begin{aligned}
\left(T_{M}\left(f_{1}\right) \circ T_{M}\left(f_{2}\right)\right)(m \otimes n) & =T_{M}\left(f_{1}\right)\left(\left(\operatorname{id}_{M} \otimes f_{2}\right)(m \otimes n)\right) \\
& =\left(\operatorname{id}_{M} \otimes f_{1}\right)\left(m \otimes f_{2}(n)\right) \\
& =m \otimes f_{1}\left(f_{2}(n)\right) \\
& =T_{M}\left(f_{1} \circ f_{2}\right)(m \otimes n)
\end{aligned}
$$

And $T_{M}\left(i d_{N}\right)(m \otimes n)=\left(\operatorname{id}_{M} \otimes i d_{N}\right)(m \otimes n)=m \otimes n$.

Tensor functor is right exact.

We have seen that $\mathbb{Q} / \mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Q}=0$; this shows that $T_{\mathbb{Q} / \mathbb{Z}}(\mathfrak{j})=0$ where $\mathfrak{j}: \mathbb{Z} \hookrightarrow \mathbb{Q}$. Notice that $T_{\mathbb{Q} / \mathbb{Z}}(\mathbb{Z})=\mathbb{Q} / \mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z} \simeq \mathbb{Q} / \mathbb{Z}$; and so $T_{\mathbb{Q} / \mathbb{Z}}(j)$ is not injective though j is injective. So T_{M} is not necessarily left exact.

Theorem 4 (Tensor defines a right exact functor) Suppose $_{A} M_{B}$ is an (A, B)-bimodule; then

$$
T_{A} M_{B}: \text { left } B-\bmod \rightarrow \text { left } A-\bmod
$$

is a right exact functor. (We often write T_{M} instead of $\mathrm{T}_{\mathrm{A}} \mathrm{M}_{\mathrm{B}}$.)

Proof. Suppose $0 \rightarrow N_{1} \xrightarrow{f_{1}} N_{2} \xrightarrow{f_{2}} N_{3} \rightarrow 0$ is a S.E.S. of left Bmodules. Then $0 \rightarrow T_{M}\left(N_{1}\right) \xrightarrow{\mathrm{T}_{M}\left(\mathrm{f}_{1}\right)} \mathrm{T}_{\mathrm{M}}\left(\mathrm{N}_{2}\right) \xrightarrow{\mathrm{T}_{\mathrm{M}}\left(\mathrm{f}_{2}\right)} \mathrm{T}_{\mathrm{M}}\left(\mathrm{N}_{3}\right) \rightarrow 0$ is a sequence of A-modules and A-module homomorphisms. Since $T_{M}\left(f_{2}\right) \circ T_{M}\left(f_{1}\right)=T_{M}\left(f_{2} \circ f_{1}\right)=0$, (it is a chain of A modules and) $\operatorname{Im}\left(T_{M}\left(f_{1}\right)\right) \subseteq \operatorname{ker} T_{M}\left(f_{2}\right)$. So there is an A-module homomorphism

$$
\theta: \mathrm{T}_{\mathrm{M}}\left(\mathrm{~N}_{2}\right) / \operatorname{Im}\left(\mathrm{T}_{\mathrm{M}}\left(\mathrm{f}_{1}\right)\right) \rightarrow \mathrm{T}_{\mathrm{M}}\left(\mathrm{~N}_{3}\right), \theta([\chi])=\mathrm{T}_{\mathrm{M}}\left(\mathrm{f}_{2}\right)(\chi),
$$

where $[x]:=x+\operatorname{Im}\left(T_{M}\left(f_{1}\right)\right)$; in particular $\theta\left(\left[m \otimes n_{2}\right]\right)=m \otimes$ $f_{2}\left(n_{2}\right)$ where $[x]:=x+\operatorname{Im}\left(T_{M}\left(f_{1}\right)\right)$.

It is enough to show θ is an isomorphism.
By showing θ is an isomorphism, we deduce that θ is injective; and so $\operatorname{ker} T_{M}\left(f_{2}\right)=\operatorname{Im}\left(T_{M}\left(f_{1}\right)\right)$. And surjectivity of θ implies that $T_{M}\left(f_{2}\right)$ is surjective.

To show θ is an isomorphism we will show that it has an inverse. We start by defining a suitable function from $M \times N_{3}$ to $T_{M}\left(N_{2}\right) / \operatorname{Im}\left(T_{M}\left(f_{1}\right)\right)$; and then we use the universal property of tensor product in order to find the inverse of θ.

Let $l: M \times N_{3} \rightarrow T_{M}\left(N_{2}\right) / \operatorname{Im}\left(T_{M}\left(f_{1}\right)\right), l\left(m, n_{3}\right):=\left[m \otimes n_{2}\right]$ where $n_{2} \in \mathrm{f}_{2}^{-1}\left(\mathrm{n}_{3}\right)$.

Well-definedness. Suppose $f_{2}\left(n_{2}\right)=f_{2}\left(n_{2}^{\prime}\right)$; then $n_{2}-n_{2}^{\prime} \in$ ker $f_{2}=\operatorname{Im}\left(f_{1}\right)$. Hence $m \otimes n_{2}-m \otimes n_{2}^{\prime} \in \operatorname{Im}\left(T_{M}\left(f_{1}\right)\right)$; and so $\left[m \otimes n_{2}\right]=\left[m \otimes n_{2}^{\prime}\right]$, which implies that l is well-defined.

B-balanced.

$$
\begin{aligned}
l\left(m \cdot b, n_{3}\right) & =\left[(m \cdot b) \otimes n_{2}\right] \\
& =\left[m \otimes b \cdot n_{2}\right] \quad\left(\text { since } f_{2}\left(b \cdot n_{2}\right)=b \cdot f_{2}\left(n_{2}\right)=b \cdot n_{3}\right) \\
& =l\left(m, n \cdot n_{3}\right) .
\end{aligned}
$$

A-linear in M and linear in N_{3} are clear.
Hence by the universal property of tensor product, there is an A-module homomorphism

$$
\psi: M \otimes_{B} N_{3} \rightarrow T_{M}\left(N_{2}\right) / \operatorname{Im}\left(T_{M}\left(f_{1}\right)\right), \psi\left(m \otimes n_{3}\right)=\left[m \otimes n_{2}\right],
$$

where $f_{2}\left(n_{2}\right)=n_{3}$. Notice that

$$
\theta \circ \psi\left(m \otimes n_{3}\right)=\theta\left(\left[m \otimes n_{2}\right]\right)=m \otimes f_{2}\left(n_{2}\right)=m \otimes n_{3},
$$

for any $m \in M$ and n_{3}. As pure tensor elements generate the tensor product as an A-module, we deduce that $\theta \circ \psi$ is identity. We also have

$$
\psi \circ \theta\left(\left[\mathfrak{m} \otimes \mathfrak{n}_{2}\right]\right)=\psi\left(\mathfrak{m} \otimes \mathrm{f}_{2}\left(\mathfrak{n}_{2}\right)\right)=\left[\mathfrak{m} \otimes \mathfrak{n}_{2}\right] ;
$$

and so $\psi \circ \theta$ is also identity. Therefore θ is an isomorphism.

Corollary 5 (Flat modules) Suppose $_{\mathrm{A}} \mathrm{M}_{\mathrm{B}}$ is an (A, B)-bimodule. Then the functor T_{M} is an exact functor if and only if $\mathrm{T}_{\mathrm{M}}(\mathrm{f})$ is injective for any injective homomorphism f . In this case, we say M is a flat B-module.

Remark. As you can see, in the above definition, we say M is a flat B-module and there is no mention of A. This might need a justification that you will see in your HW assignment. Here is the statement that you will prove: there is a natural isomorphism between the functors

and

$$
\text { left B-mod } \xrightarrow{T_{Z^{M}}} A b
$$

where F is the forgetful functor. Hence $F \circ T_{A M_{B}}$ is exact if and only if $T_{Z} M_{B}$ is exact. On the other hand, exactness of a sequence of modules is determined at the level of abelian groups; hence $F \circ T_{A M_{B}}$ is exact if and only if $T_{A} M_{B}$ is exact. So overall we get

$$
T_{A M_{B}} \text { is exact } \Leftrightarrow T_{Z} M_{B} \text { is exact. }
$$

And so flatness of M just depends on its B-module structure and is independent of its A-module structure.

