
Math200b, lecture 13

Golsefidy

Tensor product.

In the previous lecture we proved Yoneda’s lemma which
says there is a (natural) bĳection between Nat(ha,G) and G(a).
Now we want to use the idea of Yoneda’s proof to show for
an (A,B)-bimodule M and a left B-module N, there is a left
A-module F(M,N) and a natural transformation

η : hF(M,N)→ hN ◦ hM

such that ηL is an isomorphism for any left A-module L. By
Yoneda’s lemmawe know that η is uniquely determined by an
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element f0 ∈ hN ◦ hM(F(M,N)) using the following diagram:

hF(M,N)(L) hN(hM(L))

hF(M,N)(F(M,N)) hN(hM(F(M,N)))

ηL

ηF(M,N)

hF(M,N)(φ) hN(hM((φ)))

φ φ ◦ f0

1F(M,N) f0.

So we need to understand elements of hN(hM(L)); specially
since we do not know what F(M,N) is.

Suppose φ ∈ hN(hM(L)) � HomB(N, HomA(M,L)); let

lφ : M ×N→ L, lφ(m,n) :� (φ(n))(m).

Then

(a) (Linear in N)

lφ(m,n1 − n2) �(φ(n1 − n2))(m) � (φ(n1) − φ(n2))(m)
�(φ(n1))(m) − (φ(n2))(m) �
�lφ(m,n1) − lφ(m,n2).

(b) (A-Linear inM)

lφ(a1m1 + a2m2,n) �(φ(n))(a1m1 + a2m2)
�a1(φ(n))(m1) + a2(φ(n))(m2)
�a1lφ(m1,n) + a2lφ(m2,n).
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(c) (B-balanced)

lφ(m,b · n) �(φ(b · n))(m) � (b · φ(n))(m)
�(φ(n))(m · b) � lφ(m · b,n).

One can easily see that the converse of this statement holds as
well and we get

Proposition 1 The following is a bĳection from HomB(N, HomA(M,L))
and

BM,N(L) :� {l : M×N→ L| linear in N, A-linear inM, B-balanced};

φ 7→ lφ where lφ(m,n) :� (φ(n))(m). We denote its inverse by
l 7→ φl; and so (φl(n))(m) � l(m,n).

(Exercise: check the converse.)
So we need to find a left A-module F(M,N) and l0 ∈

BM,N(F(M,N)) such that for any l ∈ BM,N(L) there is a unique
φ ∈ HomA(F(M,N),L) such that l � φ ◦ l0: for l we get
φl ∈ hN(hM(L)), and so it is supposed to be φ ◦ f0 for some
unique φ ∈ HomA(F(M,N),L); this means φl � φ ◦ f0 which
implies that l � φ ◦ l0.
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So (F(M,N), l0) should have the following universal prop-
erty: for any l ∈ BM,N(L) there is auniqueφ ∈ HomA(F(M,N),L)
such that the following diagram commutes:

F(M,N)

M ×N

L

φ

l0

l

Theorem 2 For an (A,B)-bimoduleM and a leftB-moduleN, there
is a unique A-module F(M,N) and l0 ∈ BM,N(F(M,N)) such that
the above universal property holds.

Proof. (Existence)Let F(M×N) be the freeA-module generated
by the setM×N. Nextwe go to the largest quotient of F(M×N)
such that (m,n) 7→ [(m,n)] becomes B-balanced, A-linear in
M, and linear inN. Sowe letK be theA-submodule of F(M×N)
that is generated by

(m · b,n) − (m,b · n) (B-balanced)

(a1m1 + a2m2,n) − a1(m1,n) − a2(m2,n) (A-linear inM)

(m,n1 − n2) − (m,n1) + (m,n2) (linear in N)
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for any m,m1.m2 ∈ M, n,n1,n2 ∈ N, a1,a2 ∈ A and b ∈ B.
And let F(M,N) :� F(M ×N)/K, and

l0 : M ×N→ F(M,N), l0(m,n) :� [(m,n)].

Then l0 is in BM,N(F(M,N)). Suppose l ∈ BM,N(L). By the
universal property of free modules, there is an A-module ho-
momorphism φ̂ : F(M ×N) → L such that φ̂(m,n) :� l(m,n).
Since l ∈ BM,N(L), we can check that all the generators of
K are in ker φ̂. Hence there is an A-module homomorphism
φ : F(M,N) → L such that φ([(m,n)]) � φ̂(m,n) � l(m,n);
and so φ ◦ l0 � l. Since F(M,N) is generated by the image
of l0, φ is uniquely determined by its values at l0(m,n)’s; this
implies the uniqueness of φ in the universal property.

(Uniqueness) Suppose (F1, l
(1)
0 ) and (F2, l

(2)
0 ) both satisfy the

mentioned universal property. Because of the universal prop-
erty, idFi is the unique A-module homomorphism from Fi to Fi
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such that the following diagram commutes.

Fi

M ×N

Fi

idFi

l
(i)
0

l
(i)
0

Since Fi’s satisfy the universal property, there are A-module
homomorphisms φ1 : F1 → F2 and φ2 : F2 → F1 such that the
following diagram commutes

F1

M ×N

F2

φ1

l
(1)
0

l
(2)
0

φ2

And so φ1 ◦ φ2 and φ2 ◦ φ1 are identities, which implies that
they are isomorphisms. �

The unique A-module F(M,N) given in the above theorem is
called the tensor product ofM andN over B and it is denoted
byM ⊗B N. And l0(m,n) is denoted bym ⊗ n and it is called
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a pure tensor element.
To avoid confusion of all the involved left and right module

structures, one canuse the followingnotation: AMB (for (A,B)-
bimodule) and BN (for leftB-module), nowB’s canhelpus glue
these modules and end up getting a left A-module:

AMB − −BN AM ⊗B N.

Similarly one can define for a rightA-module P one can define

PA − −AMB  P ⊗AMB

which is a right B-module.
Let us summarize what we have proved:

Theorem 3 Suppose AMB is an (A,B)-bimodule and BN is a left
B-module. Then there is a unique left A-module M ⊗B N that is
generated by elements {m ⊗ n}m∈M,n∈N such that

(a) (m,n) 7→ m ⊗ n is a map from M × N to M ⊗B N that is
B-balanced, A-linear inM, and linear in N.

(b) (Tensor-Hom adjunction) There is a natural isomorphism
η : hM⊗BN→ hN◦hM; alternatively we say HomA(M⊗BN,L)
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is naturally isomorphic to HomB(N, HomA(M,L)) for any left
A-module L.

(c) (Universal Property) For any B-balanced, A-linear in M,
and linear in N, function l : M × N → L there is a unique
φ : M ⊗B N→ L such that l(m,n) � φ(m ⊗ n).

Corollary 4 Suppose AMB is an (A,B)-bimodule and BN is a left
B-module. If M is a projective A-module and N is a projective
B-module, thenM ⊗B N is a projective A-module.

Proof. Since AM is projective and AMB is a bimodule, hM is an
exact functor from left A-mod to left B-mod. Since BN is a
projective B-module, hM is an exact functor from left B-mod
to Ab. Hence hN ◦ hM is an exact functor from left A-mod to
Ab. �

The above corollary is particularly strong whenA is a com-
mutative ring. In this case, any module is both left and right
A-module. Hence we can always talk about tensor product of
two A-modules, and we get that tensor product of two projec-
tive A-modules is a projective A-module. So one can consider
the set K0(A) (in what sense?) of finitely generated projective
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A-modules up to isomorphism and define a semigroup struc-
ture on this set using tensor product. As you have seen in
your HW assignment, any (f.g.) projective module is locally
free. In math200c we focus on a subset of K0(A) that consists
of (locally rank 1) invertible elements; this is called the Picard
group Pic(A) of A.

In general it might be tricky to find various properties of a
tensor product. Here is one example which shows how torsion
elements might get killed in the tensor product.

Example. Show � ⊗� �/� � 0.
Proof. Since�⊗��/� is generated by pure tensor elements,

it is enough to show all pure tensor elements are zero. For any
r ∈ �,m,n ∈ � \ {0} we have

r ⊗
(
m

n
+�

)
�

(
r

n

)
n ⊗

(
m

n
+�

)
�-balanced

�

(
r

n

)
⊗ n

(
m

n
+�

)
�

(
r

n

)
⊗ 0.

In any tensor producta⊗0 � 0; and this is becausea⊗0+a⊗0 �

a ⊗ (0 + 0) � a ⊗ 0 (bilinear). And claim follows. �
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