Math200b, lecture 13

Golsefidy

Tensor product.

In the previous lecture we proved Yoneda's lemma which says there is a (natural) bijection between $\operatorname{Nat}\left(h^{a}, \mathcal{G}\right)$ and $\mathcal{G}(a)$. Now we want to use the idea of Yoneda's proof to show for an (A, B)-bimodule M and a left B-module N, there is a left A-module $\mathrm{F}(\mathrm{M}, \mathrm{N})$ and a natural transformation

$$
\eta: h^{F(M, N)} \rightarrow h^{N} \circ h^{M}
$$

such that η_{L} is an isomorphism for any left A-module L. By Yoneda's lemma we know that η is uniquely determined by an
element $f_{0} \in h^{N} \circ h^{M}(F(M, N))$ using the following diagram:

$$
\begin{aligned}
& \mathrm{h}^{\mathrm{F}(\mathrm{M}, \mathrm{~N})}(\mathrm{L}) \xrightarrow{\mathrm{n}_{\mathrm{L}}} \mathrm{~h}^{\mathrm{N}}\left(\mathrm{~h}^{\mathrm{M}}(\mathrm{~L})\right) \\
& \left.h^{F(M, N)}(\phi) \uparrow \quad h^{\mathrm{N}}\left(\mathrm{~h}^{\mathrm{M}}((\phi))\right)\right) \uparrow \\
& h^{F(M, N)}(F(M, N)) \xrightarrow{\eta_{F(M, N}} h^{N}\left(h^{M}(F(M, N))\right) \quad 1_{F(M, N)} \longmapsto f_{0} .
\end{aligned}
$$

So we need to understand elements of $h^{N}\left(h^{M}(L)\right)$; specially since we do not know what $F(M, N)$ is.

Suppose $\phi \in h^{N}\left(h^{M}(L)\right)=\operatorname{Hom}_{B}\left(N, \operatorname{Hom}_{A}(M, L)\right) ;$ let

$$
l_{\phi}: M \times N \rightarrow L, l_{\phi}(m, n):=(\phi(n))(m) .
$$

Then
(a) (Linear in N)

$$
\begin{aligned}
l_{\phi}\left(m, n_{1}-n_{2}\right) & =\left(\phi\left(n_{1}-n_{2}\right)\right)(m)=\left(\phi\left(n_{1}\right)-\phi\left(n_{2}\right)\right)(m) \\
& =\left(\phi\left(n_{1}\right)\right)(m)-\left(\phi\left(n_{2}\right)\right)(m)= \\
& =l_{\phi}\left(m, n_{1}\right)-l_{\phi}\left(m, n_{2}\right) .
\end{aligned}
$$

(b) (A-Linear in M)

$$
\begin{aligned}
l_{\phi}\left(a_{1} m_{1}+a_{2} m_{2}, n\right) & =(\phi(n))\left(a_{1} m_{1}+a_{2} m_{2}\right) \\
& =a_{1}(\phi(n))\left(m_{1}\right)+a_{2}(\phi(n))\left(m_{2}\right) \\
& =a_{1} l_{\phi}\left(m_{1}, n\right)+a_{2} l_{\phi}\left(m_{2}, n\right) .
\end{aligned}
$$

(c) (B-balanced)

$$
\begin{aligned}
l_{\phi}(m, b \cdot n) & =(\phi(b \cdot n))(m)=(b \cdot \phi(n))(m) \\
& =(\phi(n))(m \cdot b)=l_{\phi}(m \cdot b, n)
\end{aligned}
$$

One can easily see that the converse of this statement holds as well and we get

Proposition 1 The following is a bijection from $\operatorname{Hom}_{B}\left(N, \operatorname{Hom}_{\mathcal{A}}(M, L)\right)$ and
$\mathcal{B}_{\mathrm{M}, \mathrm{N}}(\mathrm{L}):=\{l: M \times \mathrm{N} \rightarrow \mathrm{L} \mid$ linear in N, A-linear in M, B-balanced $\} ;$
$\phi \mapsto l_{\phi}$ where $l_{\phi}(\mathfrak{m}, \mathfrak{n}):=(\phi(\mathfrak{n}))(\mathfrak{m})$. We denote its inverse by $l \mapsto \phi_{l} ;$ and so $\left(\phi_{l}(n)\right)(m)=l(m, n)$.
(Exercise: check the converse.)
So we need to find a left A-module $F(M, N)$ and $l_{0} \in$ $\mathcal{B}_{M, N}(F(M, N))$ such that for any $l \in \mathcal{B}_{M, N}(L)$ there is a unique $\phi \in \operatorname{Hom}_{\mathcal{A}}(F(M, N), L)$ such that $l=\phi \circ l_{0}$: for l we get $\phi_{l} \in h^{N}\left(h^{M}(L)\right)$, and so it is supposed to be $\phi \circ f_{0}$ for some unique $\phi \in \operatorname{Hom}_{\mathcal{A}}(F(M, N), L)$; this means $\phi_{l}=\phi \circ f_{0}$ which implies that $l=\phi \circ l_{0}$.

So $\left(F(M, N), l_{0}\right)$ should have the following universal property: for any $l \in \mathcal{B}_{M, N}(L)$ there is a unique $\phi \in \operatorname{Hom}_{\mathcal{A}}(F(M, N), L)$ such that the following diagram commutes:

Theorem 2 For an (A, B)-bimodule M and a left $\mathrm{B}-$ module N , there is a unique A -module $\mathrm{F}(\mathrm{M}, \mathrm{N})$ and $\mathrm{l}_{0} \in \mathcal{B}_{\mathrm{M}, \mathrm{N}}(\mathrm{F}(\mathrm{M}, \mathrm{N}))$ such that the above universal property holds.

Proof. (Existence) Let $F(M \times N)$ be the free A-module generated by the set $M \times N$. Next we go to the largest quotient of $F(M \times N)$ such that $(\mathfrak{m}, \mathfrak{n}) \mapsto[(m, n)]$ becomes B-balanced, A-linear in M, and linear in N. So we let K be the A-submodule of $F(M \times N)$ that is generated by

$$
\begin{array}{lr}
(m \cdot b, n)-(m, b \cdot n) & (\text { B-balanced }) \\
\left(a_{1} m_{1}+a_{2} m_{2}, \mathfrak{n}\right)-a_{1}\left(m_{1}, n\right)-a_{2}\left(m_{2}, n\right) & (A-\text { linear in } M) \\
\left(m, n_{1}-n_{2}\right)-\left(m, n_{1}\right)+\left(m, n_{2}\right) & (\text { linear in } N)
\end{array}
$$

for any $m, m_{1} \cdot m_{2} \in M, n, n_{1}, n_{2} \in N, a_{1}, a_{2} \in A$ and $b \in B$. And let $F(M, N):=F(M \times N) / K$, and

$$
l_{0}: M \times N \rightarrow F(M, N), l_{0}(m, n):=[(m, n)] .
$$

Then l_{0} is in $\mathcal{B}_{M, N}(F(M, N))$. Suppose $l \in \mathcal{B}_{M, N}(L)$. By the universal property of free modules, there is an A-module homomorphism $\widehat{\phi}: F(M \times N) \rightarrow L$ such that $\widehat{\phi}(m, n):=l(m, n)$. Since $l \in \mathcal{B}_{M, N}(\mathrm{~L})$, we can check that all the generators of K are in $\operatorname{ker} \widehat{\phi}$. Hence there is an A-module homomorphism $\phi: F(M, N) \rightarrow L$ such that $\phi([(m, n)])=\widehat{\phi}(m, n)=l(m, n)$; and so $\phi \circ l_{0}=l$. Since $F(M, N)$ is generated by the image of l_{0}, ϕ is uniquely determined by its values at $l_{0}(m, n)$'s; this implies the uniqueness of ϕ in the universal property.
(Uniqueness) Suppose ($\mathrm{F}_{1}, l_{0}^{(1)}$) and $\left(\mathrm{F}_{2}, l_{0}^{(2)}\right)$ both satisfy the mentioned universal property. Because of the universal property, $\mathrm{id}_{\mathrm{F}_{\mathrm{i}}}$ is the unique A-module homomorphism from F_{i} to F_{i}
such that the following diagram commutes.

Since F_{i} 's satisfy the universal property, there are A-module homomorphisms $\phi_{1}: F_{1} \rightarrow F_{2}$ and $\phi_{2}: F_{2} \rightarrow F_{1}$ such that the following diagram commutes

And so $\phi_{1} \circ \phi_{2}$ and $\phi_{2} \circ \phi_{1}$ are identities, which implies that they are isomorphisms.
The unique A-module $F(M, N)$ given in the above theorem is called the tensor product of M and N over B and it is denoted by $M \otimes_{B} N$. And $l_{0}(m, n)$ is denoted by $m \otimes n$ and it is called
a pure tensor element.
To avoid confusion of all the involved left and right module structures, one can use the following notation: ${ }_{A} M_{B}$ (for (A, B)bimodule) and ${ }_{B} N$ (for left B-module), now B's can help us glue these modules and end up getting a left A-module:

$$
{ }_{A} M_{B}-{ }_{B} N \rightsquigarrow{ }_{A} M \otimes_{B} N .
$$

Similarly one can define for a right A-module P one can define

$$
P_{A}-{ }_{A} M_{B} \rightsquigarrow P \otimes_{A} M_{B}
$$

which is a right B-module.
Let us summarize what we have proved:
Theorem 3 Suppose ${ }_{A} M_{B}$ is an (A, B)-bimodule and ${ }_{B} N$ is a left $B-m o d u l e$. Then there is a unique left A -module $\mathrm{M} \otimes_{\mathrm{B}} \mathrm{N}$ that is generated by elements $\{\mathfrak{m} \otimes \mathrm{n}\}_{\mathrm{m} \in \mathrm{M}, \mathrm{n} \in \mathrm{N}}$ such that
(a) $(\mathrm{m}, \mathrm{n}) \mapsto \mathrm{m} \otimes \mathrm{n}$ is a map from $\mathrm{M} \times \mathrm{N}$ to $\mathrm{M} \otimes_{\mathrm{B}} \mathrm{N}$ that is B-balanced, A -linear in M , and linear in N .
(b) (Tensor-Hom adjunction) There is a natural isomorphism $\eta: h^{M} \otimes_{B} \mathrm{~N} \rightarrow h^{\mathrm{N}}$ oh h^{M}; alternatively wesay $\operatorname{Hom}_{\mathrm{A}}\left(\mathrm{M} \otimes_{\mathrm{B}} \mathrm{N}, \mathrm{L}\right)$
is naturally isomorphic to $\operatorname{Hom}_{\mathrm{B}}\left(\mathrm{N}, \operatorname{Hom}_{\mathcal{A}}(\mathrm{M}, \mathrm{L})\right)$ for any left A-module L.
(c) (Universal Property) For any B-balanced, A-linear in M, and linear in N , function $\mathrm{l}: \mathrm{M} \times \mathrm{N} \rightarrow \mathrm{L}$ there is a unique $\phi: M \otimes_{B} N \rightarrow L$ such that $l(m, n)=\phi(m \otimes n)$.

Corollary 4 Suppose ${ }_{A} M_{B}$ is an (A, B)-bimodule and ${ }_{B} N$ is a left B -module. If M is a projective A -module and N is a projective B-module, then $\mathrm{M} \otimes_{\mathrm{B}} \mathrm{N}$ is a projective A -module.

Proof. Since ${ }_{A} M$ is projective and ${ }_{A} M_{B}$ is a bimodule, h^{M} is an exact functor from left A-mod to left B-mod. Since ${ }_{B} N$ is a projective B-module, h^{M} is an exact functor from left B-mod to $\mathbf{A b}$. Hence $h^{N} \circ h^{M}$ is an exact functor from left \boldsymbol{A}-mod to Ab.

The above corollary is particularly strong when A is a commutative ring. In this case, any module is both left and right A-module. Hence we can always talk about tensor product of two A-modules, and we get that tensor product of two projective A-modules is a projective A-module. So one can consider the set $K_{0}(A)$ (in what sense?) of finitely generated projective

A-modules up to isomorphism and define a semigroup structure on this set using tensor product. As you have seen in your HW assignment, any (f.g.) projective module is locally free. In math200c we focus on a subset of $K_{0}(A)$ that consists of (locally rank 1) invertible elements; this is called the Picard group $\operatorname{Pic}(A)$ of A.

In general it might be tricky to find various properties of a tensor product. Here is one example which shows how torsion elements might get killed in the tensor product.

Example. Show $\mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Q} / \mathbb{Z}=0$.
Proof. Since $\mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Q} / \mathbb{Z}$ is generated by pure tensor elements, it is enough to show all pure tensor elements are zero. For any $r \in \mathbb{Q}, \mathfrak{m}, n \in \mathbb{Z} \backslash\{0\}$ we have

$$
\begin{aligned}
r \otimes\left(\frac{m}{n}+\mathbb{Z}\right) & =\left(\frac{r}{n}\right) n \otimes\left(\frac{m}{n}+\mathbb{Z}\right) \quad \mathbb{Z} \text {-balanced } \\
& =\left(\frac{r}{n}\right) \otimes n\left(\frac{m}{n}+\mathbb{Z}\right) \\
& =\left(\frac{r}{n}\right) \otimes 0
\end{aligned}
$$

In any tensor product $\mathrm{a} \otimes 0=0$; and this is because $\mathrm{a} \otimes 0+\mathrm{a} \otimes 0=$ $a \otimes(0+0)=a \otimes 0$ (bilinear). And claim follows.

