
Math200b, lecture 12

Golsefidy

Projective; but not free.

Example. Let A � �[
√
−10] and a :� 〈2,

√
−10〉. Then a is a

projective A-module which is not free.
Proof. (Not free) This was proved in the previous lecture.
(Projective) It is enough to show a is a direct summand of a

free module. Notice that

0 ker θ A2 a 0,θ

is a S.E.S., where θ(x1, x2) :� 2x1 +
√
−10x2. If we knew a is

projective, we could deduce that this sequence splits. On the
other hand, if this sequence splits, then a is a direct summand
of the free module A2; and so a is projective. Hence it is
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necessary and sufficient to show that the above sequence splits.
That means we need to find ψ : a → A2 which is A-linear and
θ(ψ(x)) � x for any x ∈ a. Thinking about a as a subset of
the field of fractions F :� �[

√
−10] of A and thinking about A2

as a subset of �[
√
−10]2, we see that A-linearity means ψ(x) �

(a1x,a2x) for somea1,a2 ∈ �[
√
−10] (supposeψ1 : a → A is the

projection of ψ to the first component. Let S :� A \ {0}. Then
S−1ψ1 : S−1a → S−1A is S−1A-linear, whichmeans S−1ψ : F→ F

is F-linear; hence S−1ψ1(x) :� a1x for some a1 ∈ F.). So we are
looking for a1,a2 ∈ �[

√
−10] such that for any x ∈ a

a1x ∈ A,a2x ∈ A, and (2a1 +
√
−10a2)x � x.

You can work out the details and find many such pairs. Here
is one such example: a1 � 3,a2 :�

√
−10
2 ; but let’s explore these

conditions a bit more. An alternative way of saying those
conditions is

∃a1,a2 ∈ {a ∈ F| aa ⊆ A}, and 2a1 +
√
−10a2 � 1.

And this is equivalent to showing

{a ∈ F| aa ⊆ A}a � A.

2



In math200c, we will discuss fractional ideals (aA-submodule
M of F such that aM ⊆ A for some a ∈ A), define an equiva-
lence relation on them (M ∼ N ifM � aN for some a ∈ F×),
and get a semigroup structure. The above condition is the
same as saying that [a] is invertible. �

Bimodules and representable functor.

As we have seen earlier, for an A-module M, the rep-
resentable functor hM indeed is a functor from A-mod to
Ab; and I also pointed out that in the non-commutative set-
ting hM(N) :� HomA(M,N) is not necessarily an A-module.
Let’s go over that argument again: for φ ∈ HomA(M,N) and
a ∈ A one might want to define (a · φ)(x) :� aφ(x). Then
(a · φ)(a′x) � aφ(a′x) � aa′φ(x) which is not necessarily
a′(a · φ)(x) � a′aφ(x) (notice that if A is commutative, then it
is fine and HomA(M,N) is an A-module). So we need “com-
muting actions".

Definition 1 Suppose A and B are two unital rings. We say M is
an (A,B)-bimodule if M is a left A-module and a right B-module,
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and for any a ∈ A, b ∈ B, and x ∈M, we have (a ·x) ·b � a · (x ·b).

Notice that ifM is an (A,B)-bimodule, then (a,b) ·x :� a · (x ·b)
defines an A × Bop-module structure on M; and vice verse if
M is an A × Bop-module, then it can be viewed as an (A,B)-
bimodule.

Next we see that, ifM is a (A,B)-bimodule, then hM(N) is a
left B-module.

Proposition 2 SupposeM is an (A,B)-bimodule; then

hM : leftA-mod→ leftB-mod.

is a functor.

Proof. We have already proved that hM : leftA-mod → Ab

is a functor. So to show the claim, it is enough to show hM(N)
is a left B-module for any left A-module N, and, for any φ ∈
HomA(M,N), hM(φ) is a left B-module homomorphism.

Inorder tomakehM(N) � HomA(M,N) into a leftB-module,
we let (b · φ)(m) :� φ(m · b). Now we have to check that b · φ
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is in HomA(M,N):

(b · φ)(m1 +m2) �φ((m1 +m2) · b) � φ(m1 · b +m2 · b)
�φ(m1 · b) + φ(m2 · b)
�(b · φ)(m1) + (b · φ)(m2).

And

(b · φ)(a ·m) �φ((a ·m) · b) (definition)

�φ(a · (m · b)) (bimodule condition)

�aφ(m · b) (A-module homomorphism)

�a(b · φ)(m) (definition).

Next we check the B-module condition:

(b1 · (b2 · φ))(m) �(b2 · φ)(m · b1) (definition)

�φ((m · b1) · b2) (definition)

�φ(m · (b1b2)) (B-mod property)

�((b1b2) · φ)(m) (definition).

The rest of the properties are similar if not easier. For φ
in HomA(N,N′), we have to show hM(φ) is in HomB(N,N′).
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We have already proved that hM(φ) ∈ Hom�(N,N′). So it is
enough to show hM(φ)(b · ψ) � b · (hM(φ)(ψ)).

(hM(φ)(b · ψ))(m) �φ((b · ψ)(m)) (def of functor)

�φ(ψ(m · b)) (def of module)

�(hM(φ)(ψ))(m · b) (def of functor)

�(b · (hM(φ)(ψ)))(m) (def of module).

�

Since exactness of a chain of modules can be understood at
the level of abelian groups, we deduce:

Corollary 3 SupposeM is an (A,B)-bimodule; then

hM : leftA-mod→ leftB-mod.

is a left exact functor. And if M is a projective left A-module, then
hM is an exact functor.

Tensor product and Yoneda’s lemma.

SupposeM is an (A,B)-bimodule andN is a left B-module.
Then hN ◦hM : leftA-mod→ Ab is a functor. Next we want
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to show that it is a representable functor. This means we have
to show there is a left A-module F(M,N) such that hF(M,N)(L)
is naturally isomorphic to (hN ◦ hM)(L). So we need to find a
natural transformation η : hF(M,N) → hN ◦ hM such that, for
any L, ηL : hF(M,N)(L) → hN(hM(L)) is an isomorphism. To
see how one can think about the set of natural transformations
from a representable functor to another functor, we need to go
over Yoneda’s lemma.

Proposition 4 (Yoneda’s lemma) Suppose C is a locally small
category. Then for any a ∈ Ob(C) and any functor G : C → Set,
there is a bĳection between the set Nat(ha,G) of natural transforma-
tions from ha to G and G(a).

In fact this bĳection is natural on a and G.
Proof of Proposition 4. For b ∈ Ob(C) and f ∈ ha(b) �

HomC(a,b), we need to find ηb(f). Aswe can see below, ηb(f) �
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G(f)(ηa(1a)); and soη is uniquelydeterminedbyηa(1a) ∈ G(a).

f ηb(f)

ha(b) G(b)

ha(a) G(a)

1a ηa(1a)

ηb

ηa

ha(f) G(f)

Conversely for x ∈ G(a), for any f ∈ ha(b), we can define
ηb(f) :� G(f)(x); and one can check that it defines a natural
transformation: for g ∈ HomC(b,b′)we have to check:

g ◦ e ηb(g ◦ e) � G(g ◦ e)(x)

ha(b′) G(b′)

ha(b) G(b)

e ηa(e) � G(e)(x)

ηb

ηa

ha(g) G(g) ?
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This holds as G(g ◦ f) � G(g) ◦ G(f). �

A general extremely vague phenomenon in mathematics is
that how an object interacts with itself determines how it interacts
with others (one’s own worst enemy). You can see one instance
of this phenomenon in Yoneda’s lemma.

We will use the same idea as in proof of Yoneda’s lemma to
find F(M,N) such that hF(M,N) becomes naturally isomorphic
tohN◦hM. We call F(M,N) the tensor product ofM andN over
B, and it is denoted byM ⊗B N. Along the way we show the
universal property of tensor product, Tensor-Hom adjunction,
and quickly deduce that the tensor product of two projective
modules is projective (at least over a commutative ring).
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