Math200b, lecture 11

Golsefidy

We have proved that a module is projective if and only if it is a direct summand of a free module; in particular, any free module is projective. For a given ring A, we would like to know to what extent the converse of this statement holds; and if it fails, we would like to somehow "measure" how much it does! In genral this is hard question; in your HW assignement you will show that for a local commutative ring A, any finitely generated projective module is free. By a result of Kaplansky the same statement holds for a module that is not necessarily finitely generated. Next we show that for a PID, any finitely generated projective module is free.

Proposition 1 Let D be an integral domain. Then

free D*-module* \Rightarrow *Projective* \Rightarrow *torsion-free.*

If D *is a* PID, *for a finitely generated* D*-module all the above properties are equivalent.*

Proof. We have already discussed that a free module is projective. A projective module is a direct summand of a free module and a free module of an integral domain is torsion free. By the fundamental theorem of finitely generated modules over a PID, a torsion free finitely generated module over D is free; and claim follows.

Next we show $A = \mathbb{Z}[\sqrt{-10}]$ has a finitely generated projective module that is not free. In fact any ideal of A is projective; and since it is not a PID, it has an ideal that is not free. Based on the mentioned result of Kaplansky, a projective module is locally free. And for finitely generated modules, the converse of this statement holds as well: a finitely generated locally free module is projective. Hence by the previous proposition, if A is a Noetherian integral domain and A_p is a PID for any $p \in \text{Spec}(A)$, then any ideal of A is projective. In math200c, we will prove that $\mathbb{Z}[\sqrt{-10}]$ has this property (it is a Dedekind domain). For now, however, we present a hands-on approach and point out the connection with fractional ideals, having an

inverse as a fractional ideal, and being projective.

Lemma 2 *Suppose* D *is an integral domian and* $a \leq D$ *. Then* a *is a free* D*-module if and only if* a *is a princpal ideal.*

Proof. (\Rightarrow) Since a is a submodule of D, ranka \leq rankD = 1. So either rank a = 0 or rank a = 1. Since D has no zero-divisors, rank a = 0 implies a = 0. Hence if a non-zero ideal is a free D-module, then it has rank 1; and so a = aD for some a \in D. And claim follows.

(\Leftarrow) Since \mathfrak{a} is principal, $\mathfrak{a} = \mathfrak{a} D$ for some $\mathfrak{a} \in D$. If $\mathfrak{a} = 0$, then $\mathfrak{a} = 0$ is a free D-module. If $\mathfrak{a} \neq 0$, then $\mathfrak{x} \mapsto \mathfrak{a} \mathfrak{x}$ is a D-module isomorphism from D to \mathfrak{a} ; and so \mathfrak{a} is a free D-module.

Example. Let $A = \mathbb{Z}[\sqrt{-10}]$ and $\mathfrak{a} := \langle 2, \sqrt{-10} \rangle$. Then \mathfrak{a} is not a free A-module.

Proof. Suppose to the contrary that a is a free A-module; then by the previous lemma a is a principal ideal. So a = Aa for some a. So a|2 and $a|\sqrt{-10}$; hence N(a)|gcd(4, 10) = 2. So N(a) is either 1 or 2. Since there is no $x, y \in \mathbb{Z}$ such that $x^2 + 10y^2 = 2$, we deduce that N(a) = 1, which implies a is a

unit; and so a = A. On the other hand, one can see that, for any $z \in a$, N(z) is even; and so a is a proper ideal. Overall we get that a is not a free A-module.

In the next lecture, we show that a is a projective A-module.