Math200b, lecture 11

Golsefidy

We have proved that a module is projective if and only if it is a direct summand of a free module; in particular, any free module is projective. For a given ring A, we would like to know to what extent the converse of this statement holds; and if it fails, we would like to somehow "measure" how much it does! In genral this is hard question; in your HW assignement you will show that for a local commutative ring A, any finitely generated projective module is free. By a result of Kaplansky the same statement holds for a module that is not necessarily finitely generated. Next we show that for a PID, any finitely generated projective module is free.

Proposition 1 Let D be an integral domain. Then

$$
\text { free D-module } \Rightarrow \text { Projective } \Rightarrow \text { torsion-free. }
$$

If D is a PID, for a finitely generated D -module all the above properties are equivalent.

Proof. We have already discussed that a free module is projective. A projective module is a direct summand of a free module and a free module of an integral domain is torsion free. By the fundamental theorem of finitely generated modules over a PID, a torsion free finitely generated module over D is free; and claim follows.

Next we show $A=\mathbb{Z}[\sqrt{-10}]$ has a finitely generated projective module that is not free. In fact any ideal of A is projective; and since it is not a PID, it has an ideal that is not free. Based on the mentioned result of Kaplansky, a projective module is locally free. And for finitely generated modules, the converse of this statement holds as well: a finitely generated locally free module is projective. Hence by the previous proposition, if A is a Noetherian integral domain and A_{p} is a PID for any $\mathfrak{p} \in \operatorname{Spec}(A)$, then any ideal of A is projective. In math200c, we will prove that $\mathbb{Z}[\sqrt{-10}]$ has this property (it is a Dedekind domain). For now, however, we present a hands-on approach and point out the connection with fractional ideals, having an
inverse as a fractional ideal, and being projective.

Lemma 2 Suppose D is an integral domian and $\mathfrak{a} \unlhd \mathrm{D}$. Then \mathfrak{a} is a free D -module if and only if \mathfrak{a} is a princpal ideal.

Proof. (\Rightarrow) Since \mathfrak{a} is a submodule of D, ranka $\leq \operatorname{rankD}=1$. So either rank $\mathfrak{a}=0$ or rank $\mathfrak{a}=1$. Since D has no zero-divisors, rank $\mathfrak{a}=0$ implies $\mathfrak{a}=0$. Hence if a non-zero ideal is a free D-module, then it has rank 1 ; and so $\mathfrak{a}=a D$ for some $a \in D$. And claim follows.
(\Leftarrow) Since \mathfrak{a} is principal, $\mathfrak{a}=a D$ for some $a \in D$. If $a=0$, then $\mathfrak{a}=0$ is a free D-module. If $a \neq 0$, then $x \mapsto a x$ is a D module isomorphism from D to \mathfrak{a}; and so \mathfrak{a} is a free D-module.

Example. Let $\mathcal{A}=\mathbb{Z}[\sqrt{-10}]$ and $\mathfrak{a}:=\langle 2, \sqrt{-10}\rangle$. Then \mathfrak{a} is not a free A-module.

Proof. Suppose to the contrary that \mathfrak{a} is a free A-module; then by the previous lemma \mathfrak{a} is a principal ideal. So $\mathfrak{a}=A a$ for some a. So $a \mid 2$ and $a \mid \sqrt{-10}$; hence $N(a) \mid \operatorname{gcd}(4,10)=2$. So $N(a)$ is either 1 or 2 . Since there is no $x, y \in \mathbb{Z}$ such that $x^{2}+10 y^{2}=2$, we deduce that $N(a)=1$, which implies a is a
unit; and so $\mathfrak{a}=A$. On the other hand, one can see that, for any $z \in \mathfrak{a}, N(z)$ is even; and so \mathfrak{a} is a proper ideal. Overall we get that \mathfrak{a} is not a free A-module.

In the next lecture, we show that \mathfrak{a} is a projective A-module.

