Math200b, lecture 10

Golsefidy

Forgetful and representable functors.

In the previous lecture we defined category and functor. Here are two important functors:

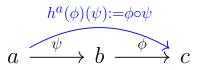
Forgetful functor. Suppose C and D are two categories such that $Ob(C) \subseteq Ob(D)$ and for any $a, b \in Ob(C)$, $Hom_{\mathcal{C}}(a, b) \subseteq Hom_{\mathcal{D}}(a, b)$. Then we can consider $\mathcal{F} : C \to D$, $\mathcal{F}(a) := a$ and $\mathcal{F}(\phi) := \phi$ for any $\phi \in Hom_{\mathcal{C}}(a, b)$. If \mathcal{F} is a functor, we call it the forgetful functor. For instance, we have forgetful functors

$$(A-\mathbf{mod}) \to \mathbf{Ab} \to \mathbf{Grp} \to \mathbf{Set};$$

at each level we are forgetting certain extra structures of the objects. Let me illustrate how we have been using the forgetful

functor: an isomorphism in category C means $\phi \in \text{Hom}_{\mathcal{C}}(a, b)$ such that, for some $\psi \in \text{Hom}_{\mathcal{C}}(b, a)$, $\phi \circ \psi = 1_b$ and $\psi \circ \phi = 1_a$. The algebraic categories that we have been working with have a forgetful functor to Set; and in all the cases (for groups, rings, and *A*-modules), based on the first isomorphism theorem, we proved that a homomorphism which is a bijection (this implies an isomorphism in the category of sets) is an isomorphism. This is a common theme: *how much do we actually lose by forgetting parts of our structure?*

Representable functor. One recurrent theme in our classes has been the importance of actions of objects: one can understand an object better by letting it *act*. Both in group theory and ring theory we saw the connection between *actions* of an object *a* with certain $\operatorname{Hom}_{\mathcal{C}}(a, \bullet)$. We can follow the same idea and for $a \in \operatorname{Ob}(\mathcal{C})$ consider $h^a(b) := \operatorname{Hom}_{\mathcal{C}}(a, b)$. When \mathcal{C} is a locally small category, we get a map from $\operatorname{Ob}(\mathcal{C})$ to $\operatorname{Ob}(\operatorname{Set})$. Next we extend this to a functor; to do so for any $\phi \in \operatorname{Hom}_{\mathcal{C}}(b, c)$, we need to define a function $h^a(\phi) : h^a(b) \to h^a(c)$. The next diagram is very suggestive of the following definition $h^a(\phi)(\psi) := \phi \circ \psi$.



Next we check that $h^a : C \to \text{Set}$ is a functor and it is called a representable functor; suppose $\phi_1 \in \text{Hom}_{\mathcal{C}}(b_1, b_2)$ and $\phi_2 \in \text{Hom}_{\mathcal{C}}(b_2, b_3)$; then

$$h^{a}(\phi_{2} \circ \phi_{1})(\psi) = (\phi_{2} \circ \phi_{1}) \circ \psi = \phi_{2} \circ (\phi_{1} \circ \psi)$$

= $h^{a}(\phi_{2})(h^{a}(\phi_{1})(\psi)) = (h^{a}(\phi_{2}) \circ h^{a}(\phi_{1}))(\psi);$
$$h^{a}(\phi_{2} \circ \phi_{1})(\psi) := (\phi_{2} \circ \phi_{1}) \circ \psi$$

 $\phi_{2} \circ \phi_{1}$
 $a \xrightarrow{\psi} b_{1} \xrightarrow{\phi_{1}} b_{2} \xrightarrow{\phi_{2}} b_{3}$
 $h^{a}(\phi_{1})(\psi)$
 $h^{a}(\phi_{2})(h^{a}(\phi_{1})(\psi))$

One can also see that $h^a(1_b) = id_{h^a(b)}$.

Natural transformation.

Before we go back to module theory, let us define another important concept from category theory: natural transformation. Suppose \mathcal{F}_1 and \mathcal{F}_2 are two functors from \mathcal{C} to \mathcal{D} ; then $\eta : \mathcal{F}_1 \to \mathcal{F}_2$ is called a natural transformation if, for any $a \in Ob(\mathcal{C}), \eta_a \in Hom_{\mathcal{D}}(\mathcal{F}_1(a), \mathcal{F}_2(a))$ and the following diagrams are commutative for any $\phi \in Hom_{\mathcal{C}}(a, b)$:

$$\mathcal{F}_{1}(a) \xrightarrow{\mathcal{F}_{1}(\phi)} \mathcal{F}_{1}(b)$$

$$\downarrow^{\eta_{a}} \qquad \downarrow^{\eta_{b}}$$

$$\mathcal{F}_{2}(a) \xrightarrow{\mathcal{F}_{2}(\phi)} \mathcal{F}_{2}(b)$$

(Notice that $\eta_a : \mathcal{F}_1(a) \to \mathcal{F}_2(a)$ kind of justifies the notation $\eta : \mathcal{F}_1 \to \mathcal{F}_2$.) When η_a 's are isomorphisms, we say $\mathcal{F}_1(a)$ is naturally isomorphic to $\mathcal{F}_2(a)$.

Representable functors of *A***-**mod.

For a left *A*-module *M*, we know that, for any left *A*-module $N, h^M(N) := \text{Hom}_A(M, N)$ is an abelian group. Next we show that h^M can be promoted to a functor to category of abelian groups.

Lemma 1 For a (left) A-module M, $h^M : A$ -mod \rightarrow **Ab** is a functor.

Proof. Since we already know that $h^M : A \text{-mod} \to \text{Set}$ is a functor and $h^M(N)$ is an abelian group, it is enough to show that $h^M(\phi)$ is an abelian group homomorphism for any $\phi \in \text{Hom}_A(N, N')$:

$$h^{M}(\phi)(\psi_{1} + \psi_{2}) = \phi \circ (\psi_{1} + \psi_{2}) = \phi \circ \psi_{1} + \phi \circ \psi_{2}$$
$$= h^{M}(\phi)(\psi_{1}) + h^{M}(\phi)(\psi_{2}).$$

Next we investigate whether injective or surjective maps are sent to injective or surjective maps, respectively.

Lemma 2 Suppose M, N, N' are (left) A-modules. If $0 \to N \xrightarrow{\phi} N'$ is an exact sequence, then $0 \to h^M(N) \xrightarrow{h^M(\phi)} h^M(N')$ is an exact sequence.

Proof. Suppose $h^M(\phi)(\psi) = 0$; then for any $x \in M$, $(h^M(\phi)(\psi))(x) = 0$ which implies $\phi(\psi(x)) = 0$. Since ϕ is injective, $\psi(x) = 0$ (for any $x \in M$); and so $\psi = 0$.

Example. (Surjective is not necessarily sent to surjective) Notice that $\mathbb{Z} \xrightarrow{\pi} \mathbb{Z}/2\mathbb{Z}$ is surjective; but $h^{\mathbb{Z}/2\mathbb{Z}}(\mathbb{Z}) \xrightarrow{h^{\mathbb{Z}}(\pi)} h^{\mathbb{Z}/2\mathbb{Z}}(\mathbb{Z}/2\mathbb{Z})$ is not surjective: $h^{\mathbb{Z}/2\mathbb{Z}}(\mathbb{Z}) = \operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/2\mathbb{Z},\mathbb{Z}) = 0$ (\mathbb{Z} has no torsion element) and $h^{\mathbb{Z}/2\mathbb{Z}}(\mathbb{Z}/2\mathbb{Z}) = \operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/2\mathbb{Z},\mathbb{Z}/2\mathbb{Z}) \neq 0$. **Theorem 3 (Left exactness)** Suppose M is a (left) A-module and $0 \rightarrow N_1 \xrightarrow{\phi_1} N_2 \xrightarrow{\phi_1} N_3 \rightarrow 0$ is a S.E.S.; then

$$0 \to h^M(N_1) \xrightarrow{h^M(\phi_1)} h^M(N_2) \xrightarrow{h^M(\phi_1)} h^M(N_3)$$

is an exact sequence.

Proof. By the previous lemma we know $h^M(\phi_1)$ is injective. So it is enough to show $\text{Im } h^M(\phi_1) = \ker h^M(\phi_2)$. Since h^M is a functor and $\phi_2 \circ \phi_1 = 0$, we have

$$h^{M}(\phi_{2}) \circ h^{M}(\phi_{1}) = h^{M}(\phi_{2} \circ \phi_{1}) = h^{M}(0) = 0;$$

and so $\operatorname{Im} h^M(\phi_1) \subseteq \ker h^M(\phi_2)$.

Suppose $\psi \in \ker h^M(\phi_2)$; that means $\phi_2 \circ \psi = 0$. Hence for any $x \in M$, $\psi(x) \in \ker \phi_2 = \operatorname{Im} \phi_1$. As ϕ_1 is injective, there is a unique element of N_1 that is mapped to $\psi(x)$; and so we get a function $\widetilde{\psi} : M \to N_1$ such that $\phi_1(\widetilde{\psi}(x)) = \psi(x)$.

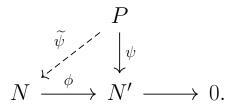
$$0 \longrightarrow N_{1}^{\widetilde{\psi}(x)} \xrightarrow{\psi_{1}} \psi_{1}^{\psi} 0$$

Thus $\psi = h^M(\phi_1)(\widetilde{\psi}) \in \operatorname{Im} h^M(\phi_1)$; and claim follows.

Next we find equivalent conditions of getting an exact functor; that means a functor that sends a S.E.S. to a S.E.S..

Theorem 4 (Projective modules) *Suppose P is a (left) A-module. Then the following statements are equivalent:*

- (a) $h^P : A$ -mod \rightarrow Ab is an exact functor.
- (b) If $\phi \in \text{Hom}_A(N, N')$ is surjective, then $h^P(\phi)$ is surjective.
- (c) Suppose $N \xrightarrow{\phi} N' \to 0$ is exact. Then any $\psi \in \text{Hom}_A(P, N')$ has a lift to $\text{Hom}_A(P, N)$; that means there is $\tilde{\psi}$ such that $\phi \circ \tilde{\psi} = \psi$.



- (d) A S.E.S. of the form $0 \to M \to M' \to P \to 0$ splits.
- (e) P is a direct summand of a free module; that means there is a (left) A-module P' and a free (left) A-module F such that $P \oplus P' \simeq F$.

A module *P* is called **projective** if the statements of the above theorem hold.

Remark. (1) Some books say *P* is projective if (c) holds; (2) The last property is the most hands on property of projective modules.

Proof of Theorem 4. By Theorem 3, h^P is a left exact functor. Hence we get that (a) \Leftrightarrow (b). Notice that

$$\psi \in \operatorname{Im} h^{P}(\phi) \Leftrightarrow \exists \widetilde{\psi} \in h^{P}(N), h^{P}(\phi)(\widetilde{\psi}) = \psi$$
$$\Leftrightarrow \exists \widetilde{\psi} \in \operatorname{Hom}_{A}(P, N), \phi \circ \widetilde{\psi} = \psi$$

and so (b) \Leftrightarrow (c).

((c) \Rightarrow (d)) By (c), id_P has a lift $\psi \in Hom_A(P, M')$; and so the given S.E.S. splits;

$$0 \longrightarrow M \longrightarrow M' \xrightarrow{\psi} P \longrightarrow 0$$

 $((d) \Rightarrow (e))$ Let F(P) be the free (left) *A*-module generated by the set *P* (here we are forgetting about the module structure of *P*). By the universal property of free modules, any function from *P* to a left *A*-module can be extended to a left *A*-module homomorphism from F(P) to that module; we use this property for the identity function $id_P : P \rightarrow P$. Hence we get a surjective *A*-module homomorphism ϕ : $F(P) \rightarrow P$; and so the following is a S.E.S.

$$0 \to \ker \phi \to F(P) \to P \to 0.$$

By (d) this S.E.S. splits; and so $F(P) \simeq P \oplus \ker \phi$, and claim follows.

((e) \Rightarrow (c)) By (e), there is a free *A*-module F(X) and an *A*-module P' such that $\theta : F(X) \xrightarrow{\simeq} P \oplus P'$. Let $\pi : F(X) \to P$ be the projection to homomorphism induced by the projection to the *P*-component; and $\iota : P \to F(X)$ be the embedding to the "first component" of F(X) via θ . Then $\pi \circ \iota = id_P$. Since ϕ is surjective, for any $x \in X$, there is $n_x \in N$ such that $\phi(n_x) = \psi(\pi(x))$. By the universal property of free modules, there is a unique *A*-module homomorphism $\widehat{\psi} : F(X) \to N$ such that, for any $x \in X$, $\widehat{\psi}(x) = n_x$. And so $\phi \circ \widehat{\psi}|_X = \psi \circ \pi|_X$; and since F(X) is generated by *X*, we deduce that $\phi \circ \widehat{\psi} = \psi \circ \pi$. Let $\widetilde{\psi} := \widehat{\psi} \circ \iota$; then $\phi \circ \widetilde{\psi} = \phi \circ \widehat{\psi} \circ \iota = \psi \circ \pi \circ \iota = \psi$; and claim

follows.

