Math200b, lecture 10

Golsefidy

Forgetful and representable functors.

In the previous lecture we defined category and functor. Here
are two important functors:

Forgetful functor. Suppose C and D are two categories such
that Ob(C) € Ob(D) and for any a,b € Ob(C), Home(a,b) C
Homp(a,b). Then we can consider F : C — D, F(a) := a and
F(¢) = ¢ for any ¢ € Home(a,b). If F is a functor, we call it

the forgetful functor. For instance, we have forgetful functors
(A—mod) — Ab — Grp — Set;

at each level we are forgetting certain extra structures of the

objects. Let me illustrate how we have been using the forgetful
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functor: an isomorphism in category C means ¢ € Home(a, b)
such that, for some i) € Hom¢(b,a), ¢ o) = 1, and ¢ o ¢ = 1,,.
The algebraic categories that we have been working with have
a forgetful functor to Set; and in all the cases (for groups,
rings, and A-modules), based on the first isomorphism the-
orem, we proved that a homomorphism which is a bijection
(this implies an isomorphism in the category of sets) is an iso-
morphism. This is a common theme: how much do we actually
lose by forgetting parts of our structure?

Representable functor. One recurrent theme in our classes has
been the importance of actions of objects: one can understand
an object better by letting it act. Both in group theory and ring
theory we saw the connection between actions of an object a
with certain Home(a, ®). We can follow the same idea and for
a € Ob(C) consider h*(b) := Home(a,b). When C is a locally
small category, we get a map from Ob(C) to Ob(Set). Next we
extend this to a functor; to do so for any ¢ € Home¢(b, ¢), we need
to define a function h%(¢) : h*(b) — h%(c). The next diagram is



very suggestive of the following definition h*(¢)(¢) := ¢ o 2.

h(¢)():=¢otp

Y

¢
a ) S C

Next we check that h* : C — Set is a functor and it is called

a representable functor; suppose ¢; € Home(by, b2) and ¢ €
Homc(bg, b3>; then

h'(¢2 0 ¢1)(¥) = (P20 ¢p1) 0 = a0 (1 0 V)
= h"(¢2)(h*(d1)(1)) = (h*(d2) o h(d1))(¥);

h(@2001)(¥):=(¢2001 )0t

One can also see that h*(1;) = idja().

Natural transformation.

Before we go back to module theory, let us define another
important concept from category theory: natural transforma-

tion. Suppose F; and F; are two functors from C to D; then
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n : F1 — JFyis called a natural transformation if, for any
a € Ob(C), n, € Homp(Fi(a), Fo(a)) and the following dia-

grams are commutative for any ¢ € Home(a, b):

F1(¢)
—

]:1(@) fl(b>

Na Mo

f
FQ(CL) ﬂ) Fg(b)

(Notice that 7, : Fi(a) = Fa(a) kind of justifies the notation
n . Fi — F.) When n,’s are isomorphisms, we say Fi(a) is

naturally isomorphic to F3(a).

Representable functors of A-mod.

For a left A-module M, we know that, for any left A-module
N, WM (N) := Hom4(M, N) is an abelian group. Next we show
that /" can be promoted to a functor to category of abelian

groups.

Lemma 1 For a (left) A-module M, h™ : A-mod — Ab is a

functor.



Proof. Since we already know that A" : A-mod — Set is a
functor and 1" () is an abelian group, it is enough to show
that h"(¢) is an abelian group homomorphism for any ¢ €
Homy (N, N'):

WM (@) (01 + 1a) =¢ 0 (Y1 +b2) = ¢ o + P oy
:hM(@(%) + hM(f/b)(%)-

H
Next we investigate whether injective or surjective maps

are sent to injective or surjective maps, respectively.

Lemma 2 Suppose M, N, N’ are (left) A-modules. If0 — N 2 N
M
is an exact sequence, then 0 — hM(N) LNy (N') is an exact

sequernce.

Proof. Suppose hM (¢)(¢)) = 0;then forany x € M, (M (¢)(v))(x)
0 which implies ¢(¢(x)) = 0. Since ¢ is injective, ¢(z) = 0 (for
any z € M); and so ¢ = 0. n
Example. (Surjective is not necessarily sent to surjective) No-
tice that Z = 7 /27 is surjective; but h?/?%(Z) Mo, e 2L(7./27.)
is not surjective: h?/?%(Z) = Homgz(Z/27,7) = 0 (Z has no tor-
sion element) and h%/?*(Z/27) = Homgz(Z /27, 7./27) # 0.
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Theorem 3 (Left exactness) Suppose M is a (left) A-module and
0— NV f1—> Ny f1—> N3 — 0isa S.E.S.; then

) WM (¢y) WM (1)

0 — hM (N AM(No) hM(N3)

is an exact sequence.

Proof. By the previous lemma we know 1" (¢,) is injective. So
it is enough to show Imh"(¢) = ker h"(¢y). Since h is a

functor and ¢, o ¢; = 0, we have
hY (¢2) o B (¢1) = B (¢2 0 1) = KM (0) = 0

and so Im hM (¢1) C ker hM (¢o).

Suppose 1) € ker hM(¢,); that means ¢, o 1) = 0. Hence for
any v € M, ¢(z) € ker ¢ = Im ¢;. As ¢; is injective, there is a
unique element of N, that is mapped to ¢(z); and so we get a
function v/ : M — Nj such that ¢, (¢(z)) = ¥(z).

M
SN
) 0
0 —— N/ =2 vl Ny — 0.
Thus ¥ = h™(¢1) (1) € Im kM (¢,); and claim follows. n
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Next we find equivalent conditions of getting an exact func-

tor; that means a functor that sends a S.E.S. to a S.E.S..

Theorem 4 (Projective modules) Suppose P is a(left) A-module.

Then the following statements are equivalent:

(a) h* : A-mod — Ab is an exact functor.
(b) If ¢ € Homa(N, N') is surjective, then h' (¢) is surjective.

(c) Suppose N % N’ = 0 is exact. Then any 1 € Homa(P, N')
has a lift to Homu(P, N); that means there is U such that
¢oy =1

P
v, y
L//

N -2y N — 0.

(d) AS.E.S. of the form 0 — M — M’ — P — 0 splits.

(e) P is a direct summand of a free module; that means there is

a (left) A-module P' and a free (left) A-module F' such that
P®» P ~F.

A module P is called projective if the statements of the above
theorem hold.



Remark. (1) Some books say P is projective if (c) holds; (2)
The last property is the most hands on property of projective
modules.

Proof of Theorem 4. By Theorem 3, h'" is a left exact functor.
Hence we get that (a) < (b). Notice that

~

v € Imh’(¢) &3¢ € B (N), b (¢)(1) = ¥
=34 € Homy(P, N), ¢ o th = 1),

and so (b)<(¢).
((c)= (d)) By (c), idp has a lift ¢ € Homu(P, M'); and so the
given S.E.S. splits;

0 — M ——> M —25 P > 0.
((d)= (e)) Let F(P) be the free (left) A-module generated by
the set P (here we are forgetting about the module structure
of P). By the universal property of free modules, any function
from P to a left A-module can be extended to a left A-module
homomorphism from F(P) to that module; we use this prop-

erty for the identity function idp : P — P. Hence we get a
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surjective A-module homomorphism ¢ : F(P) — P; and so

the following is a S.E.S.
0— ker¢p — F(P)— P — 0.

By (d) this S.E.S. splits; and so F/(P) >~ P & ker ¢, and claim
follows.

((e)= (c)) By (e), there is a free A-module F(X) and an A-
module P’ such that§ : F(X) = P® P'. Letn: F(X) — Pbe
the projection to homomorphism induced by the projectionto
the P-component; and ¢ : P — F(X) be the embedding to
the "first component” of F'(X) via §. Then 7 o+ = idp. Since
¢ is surjective, for any = € X, there is n, € N such that
d(n,) = P(mw(x)). By the universal property of free modules,
there is a unique A-module homomorphism b F(X) = N
such that, for any =z € X, &(az) =n,. And so ¢ o ?Z’X = om|x;
and since F'(X) is generated by X, we deduce that ¢o qZ = o,
Let{pv::zgoz,;then¢oz;:¢quOL:¢OWOL:¢;andclaim



follows.
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