
Math200b, lecture 10

Golsefidy

Forgetful and representable functors.

In the previous lecture we defined category and functor. Here
are two important functors:
Forgetful functor. Suppose C and D are two categories such
that Ob(C) ⊆ Ob(D) and for any a, b ∈ Ob(C), HomC(a, b) ⊆
HomD(a, b). Then we can consider F : C → D, F(a) := a and
F(φ) := φ for any φ ∈ HomC(a, b). If F is a functor, we call it
the forgetful functor. For instance, we have forgetful functors

(A−mod)→ Ab→ Grp→ Set;

at each level we are forgetting certain extra structures of the
objects. Let me illustrate howwe have been using the forgetful
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functor: an isomorphism in category C means φ ∈ HomC(a, b)

such that, for some ψ ∈ HomC(b, a), φ ◦ ψ = 1b and ψ ◦ φ = 1a.
The algebraic categories that we have been working with have
a forgetful functor to Set; and in all the cases (for groups,
rings, and A-modules), based on the first isomorphism the-
orem, we proved that a homomorphism which is a bĳection
(this implies an isomorphism in the category of sets) is an iso-
morphism. This is a common theme: how much do we actually
lose by forgetting parts of our structure?
Representable functor. One recurrent theme inour classes has
been the importance of actions of objects: one can understand
an object better by letting it act. Both in group theory and ring
theory we saw the connection between actions of an object a
with certain HomC(a, •). We can follow the same idea and for
a ∈ Ob(C) consider ha(b) := HomC(a, b). When C is a locally
small category, we get a map from Ob(C) to Ob(Set). Next we
extend this to a functor; to do so for anyφ ∈ HomC(b, c), we need
to define a function ha(φ) : ha(b)→ ha(c). The next diagram is
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very suggestive of the following definition ha(φ)(ψ) := φ ◦ ψ.

a b c
ψ

ha(φ)(ψ):=φ◦ψ

φ

Next we check that ha : C → Set is a functor and it is called
a representable functor; suppose φ1 ∈ HomC(b1, b2) and φ2 ∈
HomC(b2, b3); then

ha(φ2 ◦ φ1)(ψ) = (φ2 ◦ φ1) ◦ ψ = φ2 ◦ (φ1 ◦ ψ)

= ha(φ2)(h
a(φ1)(ψ)) = (ha(φ2) ◦ ha(φ1))(ψ);

a b1 b2 b3
ψ

ha(φ1)(ψ)

ha(φ2◦φ1)(ψ):=(φ2◦φ1)◦ψ

ha(φ2)(h
a(φ1)(ψ))

φ1

φ2◦φ1

φ2

One can also see that ha(1b) = idha(b).

Natural transformation.

Before we go back to module theory, let us define another
important concept from category theory: natural transforma-
tion. Suppose F1 and F2 are two functors from C to D; then
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η : F1 → F2 is called a natural transformation if, for any
a ∈ Ob(C), ηa ∈ HomD(F1(a),F2(a)) and the following dia-
grams are commutative for any φ ∈ HomC(a, b):

F1(a) F1(b)

F2(a) F2(b)

F1(φ)

ηa ηb

F2(φ)

(Notice that ηa : F1(a) → F2(a) kind of justifies the notation
η : F1 → F2.) When ηa’s are isomorphisms, we say F1(a) is
naturally isomorphic to F2(a).

Representable functors of A-mod.

For a left A-module M , we know that, for any left A-module
N , hM(N) := HomA(M,N) is an abelian group. Next we show
that hM can be promoted to a functor to category of abelian
groups.

Lemma 1 For a (left) A-module M , hM : A-mod → Ab is a
functor.
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Proof. Since we already know that hM : A-mod → Set is a
functor and hM(N) is an abelian group, it is enough to show
that hM(φ) is an abelian group homomorphism for any φ ∈
HomA(N,N

′):

hM(φ)(ψ1 + ψ2) =φ ◦ (ψ1 + ψ2) = φ ◦ ψ1 + φ ◦ ψ2

=hM(φ)(ψ1) + hM(φ)(ψ2).

�

Next we investigate whether injective or surjective maps
are sent to injective or surjective maps, respectively.

Lemma 2 SupposeM,N,N ′ are (left)A-modules. If 0→ N
φ−→ N ′

is an exact sequence, then 0 → hM(N)
hM (φ)−−−→ hM(N ′) is an exact

sequence.

Proof. SupposehM(φ)(ψ) = 0; then for anyx ∈M , (hM(φ)(ψ))(x) =

0 which implies φ(ψ(x)) = 0. Since φ is injective, ψ(x) = 0 (for
any x ∈M ); and so ψ = 0. �

Example. (Surjective is not necessarily sent to surjective) No-

tice thatZ π−→ Z/2Z is surjective; but hZ/2Z(Z) hZ(π)−−−→ hZ/2Z(Z/2Z)
is not surjective: hZ/2Z(Z) = HomZ(Z/2Z,Z) = 0 (Z has no tor-
sion element) and hZ/2Z(Z/2Z) = HomZ(Z/2Z,Z/2Z) 6= 0.
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Theorem 3 (Left exactness) Suppose M is a (left) A-module and
0→ N1

φ1−→ N2
φ1−→ N3 → 0 is a S.E.S.; then

0→ hM(N1)
hM (φ1)−−−−→ hM(N2)

hM (φ1)−−−−→ hM(N3)

is an exact sequence.

Proof. By the previous lemma we know hM(φ1) is injective. So
it is enough to show ImhM(φ1) = kerhM(φ2). Since hM is a
functor and φ2 ◦ φ1 = 0, we have

hM(φ2) ◦ hM(φ1) = hM(φ2 ◦ φ1) = hM(0) = 0;

and so ImhM(φ1) ⊆ kerhM(φ2).
Suppose ψ ∈ kerhM(φ2); that means φ2 ◦ ψ = 0. Hence for

any x ∈ M , ψ(x) ∈ kerφ2 = Imφ1. As φ1 is injective, there is a
unique element of N1 that is mapped to ψ(x); and so we get a
function ψ̃ :M → N1 such that φ1(ψ̃(x)) = ψ(x).

x M

0 N
ψ̃(x)
1

ψ(x)N2
0N3 0.

ψ
0

ψ̃

φ1 φ2

Thus ψ = hM(φ1)(ψ̃) ∈ ImhM(φ1); and claim follows. �
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Nextwe find equivalent conditions of getting an exact func-
tor; that means a functor that sends a S.E.S. to a S.E.S..

Theorem 4 (Projective modules) SupposeP is a (left)A-module.
Then the following statements are equivalent:

(a) hP : A-mod→ Ab is an exact functor.

(b) If φ ∈ HomA(N,N
′) is surjective, then hP (φ) is surjective.

(c) Suppose N φ−→ N ′ → 0 is exact. Then any ψ ∈ HomA(P,N
′)

has a lift to HomA(P,N); that means there is ψ̃ such that
φ ◦ ψ̃ = ψ.

P

N N ′ 0.

ψ
ψ̃

φ

(d) A S.E.S. of the form 0→M →M ′ → P → 0 splits.

(e) P is a direct summand of a free module; that means there is
a (left) A-module P ′ and a free (left) A-module F such that
P ⊕ P ′ ' F .

A module P is called projective if the statements of the above
theorem hold.
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Remark. (1) Some books say P is projective if (c) holds; (2)
The last property is the most hands on property of projective
modules.

Proof of Theorem 4. By Theorem 3, hP is a left exact functor.
Hence we get that (a)⇔ (b). Notice that

ψ ∈ ImhP (φ)⇔∃ ψ̃ ∈ hP (N), hP (φ)(ψ̃) = ψ

⇔∃ ψ̃ ∈ HomA(P,N), φ ◦ ψ̃ = ψ;

and so (b)⇔(c).
((c)⇒ (d)) By (c), idP has a lift ψ ∈ HomA(P,M

′); and so the
given S.E.S. splits;

P

0 M M ′ P 0.

idP
ψ

φ

((d)⇒ (e)) Let F (P ) be the free (left) A-module generated by
the set P (here we are forgetting about the module structure
of P ). By the universal property of free modules, any function
from P to a left A-module can be extended to a left A-module
homomorphism from F (P ) to that module; we use this prop-
erty for the identity function idP : P → P . Hence we get a
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surjective A-module homomorphism φ : F (P ) → P ; and so
the following is a S.E.S.

0→ kerφ→ F (P )→ P → 0.

By (d) this S.E.S. splits; and so F (P ) ' P ⊕ kerφ, and claim
follows.
((e)⇒ (c)) By (e), there is a free A-module F (X) and an A-
module P ′ such that θ : F (X)

'−→ P ⊕ P ′. Let π : F (X)→ P be
the projection to homomorphism induced by the projectionto
the P -component; and ι : P → F (X) be the embedding to
the "first component" of F (X) via θ. Then π ◦ ι = idP . Since
φ is surjective, for any x ∈ X , there is nx ∈ N such that
φ(nx) = ψ(π(x)). By the universal property of free modules,
there is a unique A-module homomorphism ψ̂ : F (X) → N

such that, for any x ∈ X , ψ̂(x) = nx. And so φ ◦ ψ̂|X = ψ ◦ π|X ;
and sinceF (X) is generated byX , we deduce that φ◦ψ̂ = ψ◦π.
Let ψ̃ := ψ̂ ◦ ι; then φ ◦ ψ̃ = φ ◦ ψ̂ ◦ ι = ψ ◦ π ◦ ι = ψ; and claim
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follows.
x F (X)

P

Nnx ψ(π(x))N ′ 0

π

ψ̂

ψ

ι

ψ̃

φ

�
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