
Math200b, lecture 9

Golsefidy

Exact sequences.

As in group theory, we use exact sequencers in order to
split a problem on modules into easier pieces; and sometimes
reduce it to a problem about simple modules.

Defintion. (a) We sayM1
f1−→M2

f2−→ · · · fn−1−−−→Mn is an exact
sequence if Mi’s are (left) A-modules, fi ∈ HomA(Mi,Mi+1),
and Imfi � ker fi+1; in particular fi+1 ◦ fi � 0.

(b) An exact sequence of the form 0→M1→M2→M3→
0 is called a Short Exact Sequence (S.E.S.).

(c) (φ1,φ2,φ3) is called a S.E.S. homomorphism if φi ∈
HomA(Mi,M′i), the following diagram is commuting, and each
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row is a S.E.S.:

0 M1 M2 M3 0

0 M′1 M′2 M′3 0

φ1 φ2 φ3

(φ1,φ2,φ3) is called a S.E.S. isomorphism if it is a S.E.S. homo-
morphismandφi’s are isomorphisms. (It is equivalent to a bet-
ter definition: there exists a S.E.S. homomorphism (ψ1,ψ2,ψ3)
in the reverse direction such that together with φi’s one gets a
commuting diagram.)

Lemma 1 (a) 0→M1
f−→M2 is an exact sequence if and only if f

is injective.
(b)M1

f−→M2→ 0 is an exact sequence if and only if f is surjective.
(c) Suppose 0 → M1

f1−→ M2
f2−→ M3 → 0 is a S.E.S.; then it is

isomorphic to

0→ Imf1 ↪→M2
π−→M2/Imf1→ 0,

where π is the quotient map.

Proof. (a) 0→M1
f−→M2 is an exact sequence⇔ 0 � ker f⇔ f

is injective.
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(b)M1
f−→M2→ 0 is an exact sequence⇔ Imf � ker 0 �M2⇔

f is surjective.
(c) By the first isomorphism theorem,

f2 : M2/ker f2→ Imf2, f2(x + ker f2) :� f2(x)

is a well-defined isomorphism. Since

0→M1
f1−→M2

f2−→M3→ 0

is a S.E.S., f1 is injective and f2 is surjective, and Imf1 � ker f2.
So let θ′ :� f2

−1
: M3

∼−→M2/Imf1; and notice that

θ′(f2(x)) � x + Imf1.

Since f1 is injective, θ : M1
∼−→ Imf1, θ(x) :� f1(x) is an iso-

morphism. Overall we get that the following is a commuting
diagram and claim follows:

0 M1 M2 M3 0

0 Imf1 M2 M2/Imf1 0

f1

o θ idM2

f2

o θ′

π

�
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As we have pointed out earlier, when we are working with
a S.E.S.

0→M1
f1−→M2

f2−→M3→ 0

we often want to gain some information onM2 assuming we
have already some knowledge on M1 and M3. The same is
true for a S.E.S. homomorphism (φ1,φ2,φ3). The next lemma
is a perfect example of such a result.

Lemma 2 (Short Five Lemma) Suppose (φ1,φ2,φ3) is a S.E.S.
homomorphism. Then
(a) If φ1 and φ3 are injective, then φ2 is injective.
(b) If φ1 and φ3 are surjective, then φ2 is surjective.
(c) If φ1 and φ3 are isomorphisms, then φ2 is an isomorphism.

Proof. (a) Suppose x2 ∈ kerφ2. Then as you can see in the
following diagram,φ3(f2(x2)) � 0. Sinceφ3 is injective, f2(x2) �
0. Hence x2 ∈ ker f2 � Imf1; say x2 � f1(x1). And so f′1(φ1(x2)) �
φ2(f1(x1)) � φ2(x2) � 0. Since f′1 andφ1 are injective,wededuce

4



that x1 � 0. Thus x2 � f1(x1) � 0; and claim follows.

0 M1 M2 M3 0
f1 f2

0 M′1 M′2 M′3 0
f′1 f′2

φ3φ1 φ2

x2

0

f2(x2)

0

x1

φ1(x1)

(b) Suppose y′2 ∈ M′2. Since φ3 is surjective, there is x3 ∈ M3

such that φ3(x3) � f′2(y′2). As f2 is surjective, there is x2 ∈ M2

such that f2(x2) � x3. Therefore f′2(y′2) � f′2(φ2(x2)), which
implies that y′2 − φ2(x2) ∈ ker f′2 � Imf′1. Since φ1 is surjective,
there is x1 ∈ M1 such that φ1(x1) � x′1. And so y′2 − φ2(x2) �
φ2(f1(x1)), which implies y′2 � φ2(x2+f1(x1)) ∈ Imφ2; and claim
follows.

0 M1 M2 M3 0
f1 f2

0 M′1 M′2 M′3 0
f′1 f′2

φ3φ1 φ2y′2 f′2(y′2)

x3x2

φ2(x2)
y′2 − φ2(x2)x′1

x1 f1(x1)
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(c) This is an immediate consequence of parts (a) and (b). �

Remark. There is a version of Short Five Lemma that involves
exact sequences of the formM1 → M2 → M3 → M4 → M5;
and that is why it is called Short Five Lemma.

One way to construct a S.E.S. with a givenM1 andM3 is by
considering M2 :� M1 ⊕M3, x1 7→ (x1, 0), and (x1, x3) 7→ x3.
In the next theorem, we will see four statements that imply a
given S.E.S. is of this form.

Theorem 3 (Splitting conditions) Suppose

0→M1
f1−→M2

f2−→M3→ 0

is a S.E.S.; then the following statements are equivalent.
(a) ∃N ⊆M2 which is a submodule andM2 � N ⊕ Imf1.
(b) ∃g1 : M2→M1 such that g1 ◦ f1 � idM1.
(c) ∃φ : M2

∼−→ M1 ⊕M3 such that (idM1,φ, idM3) is an isomor-
phism of S.E.S..
(b) ∃g2 : M3→M2 such that f2 ◦ g2 � idM3.

Proof. ((a)⇒ (b)) Since f1 is injective,

f1 : M1
∼−→ Imf1, f1(x) :� f1(x)
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is an isomorphism. Let π : M2 � N ⊕ Imf1 → Imf1 be the
projection to the second component; that means for x ∈ N and
y ∈ Imf1, we have π(x + y) � y. Let g1 :� f1

−1 ◦ π : M2 →M1.
It is easy to check that g1 ◦ f1 � idM1.
((b) ⇒ (c)) Let φ : M2 → M1 ⊕M3, φ(x2) :� (g1(x2), f2(x2)).
Then it is easy to see that (idM1,φ, idM3) is a S.E.S. homomor-
phism. Since idM1 and idM3 are isomorphisms, by Short Five
Lemma φ is an isomorphism; and claim follows.
((c)⇒ (d)) Following the arrows idM3, i2, and φ−1, we get the
desired homomorphism g2:

0 M1 M2 M3 0

0 M1 M1 ⊕M3 M3 0

f1

idM1 φ

f2

idM3g2

i1 p2

i2

((d)⇒ (a)) LetN :� Img2. For anyx2 ∈M2, wehave f2(g2(f2(x2))) �
f2(x2) as f2 ◦ g2 � idM3. Hence x2 − g2(f2(x2)) ∈ ker f2 � Imf1.
Therefore x2 ∈ g2(f2(x2)) + Imf1 ⊆ N + Imf1, which implies

M2 � Imf1 +N.

Suppose x2 ∈ Imf1 ∩N. Hence x2 � g2(x3) for some x3 ∈ M3;
and so x3 � f2(g2(x3)) � f2(x2). Since x2 ∈ Imf1 � ker f2, we
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have f2(x2) � 0. Overall we get x3 � f2(x2) � 0. This implies
that x2 � g2(x3) � g2(0) � 0; altogether Imf1 ⊕ N �M2. �

Remark. For (non-commutative) groups, we called a S.E.S.
split if (d) holds; and it only implies that the middle group is a
semi-direct product of the other groups. If (a) holds, then the
middle group is isomorphic to the direct product of the other
groups; and its proof is similar to the argument presented
above. It is worth pointing out that the above argument holds
for groups aswell; but it only implies that Img2 is a subgroup of
G2 which is a complement of Imf1. Since Img2 is not necessarily
a normal subgroup, we can only deduce that their semi-direct
product gives us G2.

Basics of Category theory.

We only mention very basic concepts of Category Theory
in this class and use it only as a language. A category C has a
class of objects Ob(C) and for any two objects a,b ∈ Ob(C) it
has a class of homomorphisms or arrows HomC(a,b); with the
following properties: for a,b, c ∈ Ob(C), f ∈ HomC(a,b), and
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g ∈ HomC(b, c), there is g ◦ f ∈ HomC(a, c) such that
(Associativity) (f ◦ g) ◦ h � f ◦ (g ◦ h).
(Identity) For any a ∈ Ob(C), there is 1a ∈ HomC(a,a) such
that 1a ◦ f � f and g ◦ 1a � g whenever they are defined.
Alternatively the following diagrams are commuting.

a b c d
f

g◦f

(h◦g)◦f

h◦(g◦f)

g
h◦g

h , a b
f1a 1b .

Category C is called a small category if

Ob(C) and ∪a,b∈Ob(C) HomC(a,b)

are sets; it is called locally small if HomC(a,b) is a set for any
a,b ∈ Ob(C). In this course, we only work with locally small
categories. Here are a few examples:
Set. Objects are sets, and for any two sets a,b,

HomSet(a,b) :� {f : a→ b| f is a function};

(with the caveat of the figuring out what it means to have a
function to the empty set or from an empty set!)
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Grp. Objects are groups, and for any two groups a,b,

HomGrp(a,b) :� {f : a→ b| f is a group homomorphism}.

Ab. Objects are abelian groups, and for any two abelian
groups a,b,

HomAb(a,b) :� {f : a→ b| f is a group homomorphism}.

A−mod. Objects are groups, and for any two groups a,b,

HomA−mod(a,b) :� HomA(a,b).

One can think about a category as a directed graph with la-
beled edges (vertices are objects of the category, and edges are
given by homomorphisms). Now having two such directed
graphs, one can look for possible graph homomorphisms.
Suppose C and D are two categories. We say F : C → D is a
functor if

(a) for any a ∈ Ob(C), F (a) ∈ Ob(D);
(b) for anyφ ∈ HomC(a,b), F (φ) ∈ HomD(F (a),F (b)); and
(c) F (φ ◦ψ) � F (φ) ◦ F (ψ)whenever they are defined.
(d) F (1a) � 1F (a) for any a ∈ Ob(C)

In the next lecture we will start with two general examples of
functors.
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