Math200b, lecture 9

Golsefidy

Exact sequences.

As in group theory, we use exact sequencers in order to split a problem on modules into easier pieces; and sometimes reduce it to a problem about simple modules.

Definition. (a) We say $M_1 \xrightarrow{f_1} M_2 \xrightarrow{f_2} \cdots \xrightarrow{f_{n-1}} M_n$ is an exact sequence if M_i 's are (left) A-modules, $f_i \in \text{Hom}_A(M_i, M_{i+1})$, and $\text{Im} f_i = \ker f_{i+1}$; in particular $f_{i+1} \circ f_i = 0$.

(b) An exact sequence of the form $0 \rightarrow M_1 \rightarrow M_2 \rightarrow M_3 \rightarrow 0$ is called a Short Exact Sequence (S.E.S.).

(c) (ϕ_1, ϕ_2, ϕ_3) is called a S.E.S. homomorphism if $\phi_i \in \text{Hom}_A(M_i, M'_i)$, the following diagram is commuting, and each

row is a S.E.S.:

 (ϕ_1, ϕ_2, ϕ_3) is called a S.E.S. isomorphism if it is a S.E.S. homomorphism and ϕ_i 's are isomorphisms. (It is equivalent to a better definition: there exists a S.E.S. homomorphism (ψ_1, ψ_2, ψ_3) in the reverse direction such that together with ϕ_i 's one gets a commuting diagram.)

Lemma 1 (a) $0 \to M_1 \xrightarrow{f} M_2$ is an exact sequence if and only if f is injective. (b) $M_1 \xrightarrow{f} M_2 \to 0$ is an exact sequence if and only if f is surjective. (c) Suppose $0 \to M_1 \xrightarrow{f_1} M_2 \xrightarrow{f_2} M_3 \to 0$ is a S.E.S.; then it is isomorphic to

$$0 \to \mathrm{Im} \mathbf{f}_1 \hookrightarrow \mathbf{M}_2 \xrightarrow{\pi} \mathbf{M}_2 / \mathrm{Im} \mathbf{f}_1 \to 0,$$

where π is the quotient map.

Proof. (a) $0 \to M_1 \xrightarrow{f} M_2$ is an exact sequence $\Leftrightarrow 0 = \ker f \Leftrightarrow f$ is injective.

(b) $M_1 \xrightarrow{f} M_2 \rightarrow 0$ is an exact sequence $\Leftrightarrow \text{Im} f = \text{ker} 0 = M_2 \Leftrightarrow$ f is surjective.

(c) By the first isomorphism theorem,

$$\overline{f_2}: M_2/\ker f_2 \rightarrow \operatorname{Im} f_2, \overline{f_2}(x + \ker f_2) := f_2(x)$$

is a well-defined isomorphism. Since

$$0 \to \mathsf{M}_1 \xrightarrow{\mathsf{f}_1} \mathsf{M}_2 \xrightarrow{\mathsf{f}_2} \mathsf{M}_3 \to 0$$

is a S.E.S., f_1 is injective and f_2 is surjective, and $\text{Im} f_1 = \ker f_2$. So let $\theta' := \overline{f_2}^{-1} : \mathcal{M}_3 \xrightarrow{\sim} \mathcal{M}_2/\text{Im} f_1$; and notice that

$$\theta'(f_2(\mathbf{x})) = \mathbf{x} + \mathrm{Im} f_1.$$

Since f_1 is injective, $\theta : M_1 \xrightarrow{\sim} \text{Im} f_1, \theta(x) := f_1(x)$ is an isomorphism. Overall we get that the following is a commuting diagram and claim follows:

$$0 \longrightarrow M_{1} \xrightarrow{f_{1}} M_{2} \xrightarrow{f_{2}} M_{3} \longrightarrow 0$$
$$\downarrow^{\wr \theta} \qquad \downarrow^{\operatorname{id}_{M_{2}}} \qquad \downarrow^{\wr \theta'}$$
$$0 \longrightarrow \operatorname{Im} f_{1} \longleftrightarrow M_{2} \xrightarrow{\pi} M_{2}/\operatorname{Im} f_{1} \longrightarrow 0$$

As we have pointed out earlier, when we are working with a S.E.S.

$$0 \to \mathcal{M}_1 \xrightarrow{f_1} \mathcal{M}_2 \xrightarrow{f_2} \mathcal{M}_3 \to 0$$

we often want to gain some information on M_2 assuming we have already some knowledge on M_1 and M_3 . The same is true for a S.E.S. homomorphism (ϕ_1, ϕ_2, ϕ_3). The next lemma is a perfect example of such a result.

Lemma 2 (Short Five Lemma) Suppose (ϕ_1, ϕ_2, ϕ_3) is a S.E.S. *homomorphism. Then*

- (a) If ϕ_1 and ϕ_3 are injective, then ϕ_2 is injective.
- (b) If ϕ_1 and ϕ_3 are surjective, then ϕ_2 is surjective.
- (c) If ϕ_1 and ϕ_3 are isomorphisms, then ϕ_2 is an isomorphism.

Proof. (a) Suppose $x_2 \in \ker \varphi_2$. Then as you can see in the following diagram, $\varphi_3(f_2(x_2)) = 0$. Since φ_3 is injective, $f_2(x_2) = 0$. Hence $x_2 \in \ker f_2 = \operatorname{Im} f_1$; say $x_2 = f_1(x_1)$. And so $f'_1(\varphi_1(x_2)) = \varphi_2(f_1(x_1)) = \varphi_2(x_2) = 0$. Since f'_1 and φ_1 are injective, we deduce

that $x_1 = 0$. Thus $x_2 = f_1(x_1) = 0$; and claim follows.

(b) Suppose $y'_2 \in M'_2$. Since ϕ_3 is surjective, there is $x_3 \in M_3$ such that $\phi_3(x_3) = f'_2(y'_2)$. As f_2 is surjective, there is $x_2 \in M_2$ such that $f_2(x_2) = x_3$. Therefore $f'_2(y'_2) = f'_2(\phi_2(x_2))$, which implies that $y'_2 - \phi_2(x_2) \in \ker f'_2 = \operatorname{Im} f'_1$. Since ϕ_1 is surjective, there is $x_1 \in M_1$ such that $\phi_1(x_1) = x'_1$. And so $y'_2 - \phi_2(x_2) = \phi_2(f_1(x_1))$, which implies $y'_2 = \phi_2(x_2 + f_1(x_1)) \in \operatorname{Im} \phi_2$; and claim follows.

(c) This is an immediate consequence of parts (a) and (b). **Remark.** There is a version of Short Five Lemma that involves exact sequences of the form $M_1 \rightarrow M_2 \rightarrow M_3 \rightarrow M_4 \rightarrow M_5$; and that is why it is called Short <u>Five</u> Lemma.

One way to construct a S.E.S. with a given M_1 and M_3 is by considering $M_2 := M_1 \oplus M_3$, $x_1 \mapsto (x_1, 0)$, and $(x_1, x_3) \mapsto x_3$. In the next theorem, we will see four statements that imply a given S.E.S. is of this form.

Theorem 3 (Splitting conditions) Suppose

$$0 \to \mathsf{M}_1 \xrightarrow{\mathsf{f}_1} \mathsf{M}_2 \xrightarrow{\mathsf{f}_2} \mathsf{M}_3 \to 0$$

is a S.E.S.; then the following statements are equivalent. (a) $\exists N \subseteq M_2$ which is a submodule and $M_2 = N \oplus \text{Im}f_1$. (b) $\exists g_1 : M_2 \rightarrow M_1$ such that $g_1 \circ f_1 = \text{id}_{M_1}$. (c) $\exists \varphi : M_2 \xrightarrow{\sim} M_1 \oplus M_3$ such that $(\text{id}_{M_1}, \varphi, \text{id}_{M_3})$ is an isomorphism of S.E.S..

(b) $\exists g_2 : M_3 \rightarrow M_2$ such that $f_2 \circ g_2 = id_{M_3}$.

Proof. ((a) \Rightarrow (b)) Since f_1 is injective,

$$\overline{f_1}: M_1 \xrightarrow{\sim} \operatorname{Im} f_1, \overline{f_1}(x) := f_1(x)$$

is an isomorphism. Let $\pi : M_2 = N \oplus \text{Im} f_1 \to \text{Im} f_1$ be the projection to the second component; that means for $x \in N$ and $y \in \text{Im} f_1$, we have $\pi(x + y) = y$. Let $g_1 := \overline{f_1}^{-1} \circ \pi : M_2 \to M_1$. It is easy to check that $g_1 \circ f_1 = \text{id}_{M_1}$.

((b) \Rightarrow (c)) Let $\phi : M_2 \rightarrow M_1 \oplus M_3$, $\phi(x_2) := (g_1(x_2), f_2(x_2))$. Then it is easy to see that $(id_{M_1}, \phi, id_{M_3})$ is a S.E.S. homomorphism. Since id_{M_1} and id_{M_3} are isomorphisms, by Short Five Lemma ϕ is an isomorphism; and claim follows.

((c) \Rightarrow (d)) Following the arrows id_{M_3} , i_2 , and ϕ^{-1} , we get the desired homomorphism g_2 :

$$0 \longrightarrow M_{1} \xrightarrow{f_{1}} M_{2} \xrightarrow{f_{2}} M_{3} \longrightarrow 0$$
$$\downarrow^{\mathrm{id}_{M_{1}}} \downarrow^{\phi} \xrightarrow{g_{2}} \downarrow^{\mathrm{id}_{M_{3}}} 0$$
$$0 \longrightarrow M_{1} \xrightarrow{i_{1}} M_{1} \oplus M_{3} \xrightarrow{p_{2}} M_{3} \longrightarrow 0$$

 $((d) \Rightarrow (a))$ Let $N := \text{Im} g_2$. For any $x_2 \in M_2$, we have $f_2(g_2(f_2(x_2))) = f_2(x_2)$ as $f_2 \circ g_2 = \text{id}_{M_3}$. Hence $x_2 - g_2(f_2(x_2)) \in \text{ker} f_2 = \text{Im} f_1$. Therefore $x_2 \in g_2(f_2(x_2)) + \text{Im} f_1 \subseteq N + \text{Im} f_1$, which implies

$$\mathsf{M}_2 = \mathrm{Im}\mathsf{f}_1 + \mathsf{N}.$$

Suppose $x_2 \in \text{Im} f_1 \cap N$. Hence $x_2 = g_2(x_3)$ for some $x_3 \in M_3$; and so $x_3 = f_2(g_2(x_3)) = f_2(x_2)$. Since $x_2 \in \text{Im} f_1 = \ker f_2$, we have $f_2(x_2) = 0$. Overall we get $x_3 = f_2(x_2) = 0$. This implies that $x_2 = g_2(x_3) = g_2(0) = 0$; altogether $\text{Im} f_1 \oplus N = M_2$.

Remark. For (non-commutative) groups, we called a S.E.S. split if (d) holds; and it only implies that the middle group is a semi-direct product of the other groups. If (a) holds, then the middle group is isomorphic to the direct product of the other groups; and its proof is similar to the argument presented above. It is worth pointing out that the above argument holds for groups as well; but it only implies that Img_2 is a subgroup of G_2 which is a *complement* of Imf_1 . Since Img_2 is not necessarily a normal subgroup, we can only deduce that their <u>semi</u>-direct product gives us G_2 .

Basics of Category theory.

We only mention very basic concepts of Category Theory in this class and use it only as a language. A category *C* has a class of objects Ob(C) and for any two objects $a, b \in Ob(C)$ it has a class of homomorphisms or arrows $Hom_C(a, b)$; with the following properties: for $a, b, c \in Ob(C)$, $f \in Hom_C(a, b)$, and $g \in Hom_{\mathcal{C}}(b, c)$, there is $g \circ f \in Hom_{\mathcal{C}}(a, c)$ such that (Associativity) $(f \circ g) \circ h = f \circ (g \circ h)$.

(Identity) For any $a \in Ob(C)$, there is $1_a \in Hom_C(a, a)$ such that $1_a \circ f = f$ and $g \circ 1_a = g$ whenever they are defined. Alternatively the following diagrams are commuting.

Category *C* is called a small category if

 $Ob(\mathcal{C})$ and $\cup_{\mathfrak{a},\mathfrak{b}\in Ob(\mathcal{C})} Hom_{\mathcal{C}}(\mathfrak{a},\mathfrak{b})$

are sets; it is called locally small if $\text{Hom}_{C}(a, b)$ is a set for any $a, b \in Ob(C)$. In this course, we only work with locally small categories. Here are a few examples:

Set. Objects are sets, and for any two sets a, b,

 $\operatorname{Hom}_{Set}(\mathfrak{a}, \mathfrak{b}) := \{f : \mathfrak{a} \to \mathfrak{b} | f \text{ is a function} \};$

(with the caveat of the figuring out what it means to have a function to the empty set or from an empty set!)

Grp. Objects are groups, and for any two groups a, b,

Hom_{Grp}(a, b) := {f : $a \rightarrow b$ | f is a group homomorphism}. **Ab**. Objects are abelian groups, and for any two abelian groups a, b,

 $\operatorname{Hom}_{Ab}(a, b) := \{f : a \to b | f \text{ is a group homomorphism} \}.$

A-mod. Objects are groups, and for any two groups a, b,

$$\operatorname{Hom}_{A-\operatorname{mod}(\mathfrak{a},\mathfrak{b})} := \operatorname{Hom}_{A}(\mathfrak{a},\mathfrak{b}).$$

One can think about a category as a directed graph with labeled edges (vertices are objects of the category, and edges are given by homomorphisms). Now having two such directed graphs, one can look for possible *graph homomorphisms*.

Suppose *C* and *D* are two categories. We say $\mathcal{F} : C \to D$ is a functor if

(a) for any $a \in Ob(C)$, $\mathcal{F}(a) \in Ob(\mathcal{D})$;

- (b) for any $\phi \in \operatorname{Hom}_{\mathcal{C}}(\mathfrak{a}, \mathfrak{b}), \mathcal{F}(\phi) \in \operatorname{Hom}_{\mathcal{D}}(\mathcal{F}(\mathfrak{a}), \mathcal{F}(\mathfrak{b}))$; and
- (c) $\mathcal{F}(\phi \circ \psi) = \mathcal{F}(\phi) \circ \mathcal{F}(\psi)$ whenever they are defined.

(d) $\mathcal{F}(1_{\mathfrak{a}}) = 1_{\mathcal{F}(\mathfrak{a})}$ for any $\mathfrak{a} \in Ob(\mathcal{C})$

In the next lecture we will start with two general examples of functors.