Math200b, lecture 9

Golsefidy

Exact sequences.

As in group theory, we use exact sequencers in order to split a problem on modules into easier pieces; and sometimes reduce it to a problem about simple modules.

Defintion. (a) We say $M_{1} \xrightarrow{f_{1}} M_{2} \xrightarrow{f_{2}} \cdots \xrightarrow{f_{n-1}} M_{n}$ is an exact sequence if M_{i} 's are (left) A-modules, $f_{i} \in \operatorname{Hom}_{\mathcal{A}}\left(M_{i}, M_{i+1}\right)$, and $\operatorname{Im} f_{i}=\operatorname{ker} f_{i+1} ;$ in particular $f_{i+1} \circ f_{i}=0$.
(b) An exact sequence of the form $0 \rightarrow M_{1} \rightarrow M_{2} \rightarrow M_{3} \rightarrow$ 0 is called a Short Exact Sequence (S.E.S.).
(c) $\left(\phi_{1}, \phi_{2}, \phi_{3}\right)$ is called a S.E.S. homomorphism if $\phi_{i} \in$ $\operatorname{Hom}_{\mathcal{A}}\left(M_{i}, M_{\mathfrak{i}}^{\prime}\right)$, the following diagram is commuting, and each
row is a S.E.S.:

$\left(\phi_{1}, \phi_{2}, \phi_{3}\right)$ is called a S.E.S. isomorphism if it is a S.E.S. homomorphism and $\phi_{i}{ }^{\prime}$ s are isomorphisms. (It is equivalent to a better definition: there exists a S.E.S. homomorphism $\left(\psi_{1}, \psi_{2}, \psi_{3}\right)$ in the reverse direction such that together with ϕ_{i} 's one gets a commuting diagram.)

Lemma 1 (a) $0 \rightarrow M_{1} \xrightarrow{f} M_{2}$ is an exact sequence if and only if f is injective.
(b) $\mathrm{M}_{1} \xrightarrow{\mathrm{f}} \mathrm{M}_{2} \rightarrow 0$ is an exact sequence if and only if f is surjective. (c) Suppose $0 \rightarrow M_{1} \xrightarrow{f_{1}} M_{2} \xrightarrow{f_{2}} M_{3} \rightarrow 0$ is a S.E.S.; then it is isomorphic to

$$
0 \rightarrow \operatorname{Imf}_{1} \hookrightarrow M_{2} \xrightarrow{\pi} M_{2} / \operatorname{Imf}_{1} \rightarrow 0
$$

where π is the quotient map.
Proof. (a) $0 \rightarrow \mathrm{M}_{1} \xrightarrow{\mathrm{f}} \mathrm{M}_{2}$ is an exact sequence $\Leftrightarrow 0=\operatorname{ker} \mathrm{f} \Leftrightarrow \mathrm{f}$ is injective.
(b) $M_{1} \xrightarrow{f} M_{2} \rightarrow 0$ is an exact sequence $\Leftrightarrow \operatorname{Imf}=\operatorname{ker} 0=M_{2} \Leftrightarrow$ f is surjective.
(c) By the first isomorphism theorem,

$$
\overline{\mathbf{f}_{2}}: M_{2} / \operatorname{ker} \mathrm{f}_{2} \rightarrow \operatorname{Imf}_{2}, \overline{\mathrm{f}_{2}}\left(\mathrm{x}+\operatorname{ker} \mathrm{f}_{2}\right):=\mathrm{f}_{2}(\mathrm{x})
$$

is a well-defined isomorphism. Since

$$
0 \rightarrow M_{1} \xrightarrow{f_{1}} M_{2} \xrightarrow{f_{2}} M_{3} \rightarrow 0
$$

is a S.E.S., f_{1} is injective and f_{2} is surjective, and $\operatorname{Imf} f_{1}=\operatorname{ker} f_{2}$. So let $\theta^{\prime}:=\overline{f_{2}}{ }^{-1}: M_{3} \xrightarrow{\sim} M_{2} / \operatorname{Imf}_{1}$; and notice that

$$
\theta^{\prime}\left(f_{2}(x)\right)=x+\operatorname{Imf}_{1} .
$$

Since f_{1} is injective, $\theta: M_{1} \xrightarrow{\sim} \operatorname{Imf}_{1}, \theta(x):=f_{1}(x)$ is an isomorphism. Overall we get that the following is a commuting diagram and claim follows:

As we have pointed out earlier, when we are working with a S.E.S.

$$
0 \rightarrow M_{1} \xrightarrow{f_{1}} M_{2} \xrightarrow{f_{2}} M_{3} \rightarrow 0
$$

we often want to gain some information on M_{2} assuming we have already some knowledge on M_{1} and M_{3}. The same is true for a S.E.S. homomorphism ($\phi_{1}, \phi_{2}, \phi_{3}$). The next lemma is a perfect example of such a result.

Lemma 2 (Short Five Lemma) Suppose $\left(\phi_{1}, \phi_{2}, \phi_{3}\right)$ is a S.E.S. homomorphism. Then
(a) If ϕ_{1} and ϕ_{3} are injective, then ϕ_{2} is injective.
(b) If ϕ_{1} and ϕ_{3} are surjective, then ϕ_{2} is surjective.
(c) If ϕ_{1} and ϕ_{3} are isomorphisms, then ϕ_{2} is an isomorphism.

Proof. (a) Suppose $x_{2} \in \operatorname{ker} \phi_{2}$. Then as you can see in the following diagram, $\phi_{3}\left(f_{2}\left(x_{2}\right)\right)=0$. Since ϕ_{3} is injective, $f_{2}\left(x_{2}\right)=$ 0 . Hence $x_{2} \in \operatorname{ker} f_{2}=\operatorname{Imf}_{1} ;$ say $x_{2}=f_{1}\left(x_{1}\right)$. And so $f_{1}^{\prime}\left(\phi_{1}\left(x_{2}\right)\right)=$ $\phi_{2}\left(f_{1}\left(x_{1}\right)\right)=\phi_{2}\left(x_{2}\right)=0$. Since f_{1}^{\prime} and ϕ_{1} are injective, we deduce
that $x_{1}=0$. Thus $x_{2}=f_{1}\left(x_{1}\right)=0$; and claim follows.

(b) Suppose $y_{2}^{\prime} \in M_{2}^{\prime}$. Since ϕ_{3} is surjective, there is $x_{3} \in M_{3}$ such that $\phi_{3}\left(x_{3}\right)=f_{2}^{\prime}\left(y_{2}^{\prime}\right)$. As f_{2} is surjective, there is $x_{2} \in M_{2}$ such that $f_{2}\left(x_{2}\right)=x_{3}$. Therefore $f_{2}^{\prime}\left(y_{2}^{\prime}\right)=f_{2}^{\prime}\left(\phi_{2}\left(x_{2}\right)\right)$, which implies that $y_{2}^{\prime}-\phi_{2}\left(x_{2}\right) \in \operatorname{ker} f_{2}^{\prime}=\operatorname{Im} f_{1}^{\prime}$. Since ϕ_{1} is surjective, there is $x_{1} \in M_{1}$ such that $\phi_{1}\left(x_{1}\right)=x_{1}^{\prime}$. And so $y_{2}^{\prime}-\phi_{2}\left(x_{2}\right)=$ $\phi_{2}\left(f_{1}\left(x_{1}\right)\right)$, which implies $y_{2}^{\prime}=\phi_{2}\left(x_{2}+f_{1}\left(x_{1}\right)\right) \in \operatorname{Im} \phi_{2} ;$ and claim follows.

(c) This is an immediate consequence of parts (a) and (b).

Remark. There is a version of Short Five Lemma that involves exact sequences of the form $M_{1} \rightarrow M_{2} \rightarrow M_{3} \rightarrow M_{4} \rightarrow M_{5}$; and that is why it is called Short Five Lemma.

One way to construct a S.E.S. with a given M_{1} and M_{3} is by considering $M_{2}:=M_{1} \oplus M_{3}, x_{1} \mapsto\left(x_{1}, 0\right)$, and $\left(x_{1}, x_{3}\right) \mapsto x_{3}$. In the next theorem, we will see four statements that imply a given S.E.S. is of this form.

Theorem 3 (Splitting conditions) Suppose

$$
0 \rightarrow M_{1} \xrightarrow{f_{1}} M_{2} \xrightarrow{f_{2}} M_{3} \rightarrow 0
$$

is a S.E.S.; then the following statements are equivalent.
(a) $\exists \mathrm{N} \subseteq \mathrm{M}_{2}$ which is a submodule and $\mathrm{M}_{2}=\mathrm{N} \oplus \operatorname{Imf}_{1}$.
(b) $\exists g_{1}: M_{2} \rightarrow M_{1}$ such that $g_{1} \circ f_{1}=i d_{M_{1}}$.
(c) $\exists \phi: M_{2} \xrightarrow{\sim} M_{1} \oplus M_{3}$ such that $\left(\mathrm{id}_{M_{1}}, \phi, \mathrm{id}_{M_{3}}\right)$ is an isomorphism of S.E.S..
(b) $\exists g_{2}: M_{3} \rightarrow M_{2}$ such that $f_{2} \circ g_{2}=\operatorname{id}_{M_{3}}$.

Proof. ((a) $\Rightarrow(\mathrm{b}))$ Since f_{1} is injective,

$$
\overline{f_{1}}: M_{1} \xrightarrow{\sim} \operatorname{Imf}_{1}, \overline{f_{1}}(x):=f_{1}(x)
$$

is an isomorphism. Let $\pi: M_{2}=N \oplus \operatorname{Imf}_{1} \rightarrow \operatorname{Imf}_{1}$ be the projection to the second component; that means for $x \in N$ and $y \in \operatorname{Imf}_{1}$, we have $\pi(x+y)=y$. Let $g_{1}:={\overline{f_{1}}}^{-1} \circ \pi: M_{2} \rightarrow M_{1}$. It is easy to check that $g_{1} \circ f_{1}=\operatorname{id}_{M_{1}}$.
$((b) \Rightarrow(c))$ Let $\phi: M_{2} \rightarrow M_{1} \oplus M_{3}, \phi\left(x_{2}\right):=\left(g_{1}\left(x_{2}\right), f_{2}\left(x_{2}\right)\right)$.
Then it is easy to see that $\left(\mathrm{id}_{M_{1}}, \phi, \mathrm{id}_{M_{3}}\right)$ is a S.E.S. homomorphism. Since $\mathrm{id}_{M_{1}}$ and $\mathrm{id}_{M_{3}}$ are isomorphisms, by Short Five Lemma ϕ is an isomorphism; and claim follows.
$((\mathrm{c}) \Rightarrow(\mathrm{d}))$ Following the arrows $\mathrm{id}_{M_{3}}, \mathfrak{i}_{2}$, and ϕ^{-1}, we get the desired homomorphism g_{2} :

$((d) \Rightarrow(a)) \operatorname{Let} N:=\operatorname{Img}_{2}$. For any $x_{2} \in M_{2}$, we have $f_{2}\left(g_{2}\left(f_{2}\left(x_{2}\right)\right)\right)=$ $f_{2}\left(x_{2}\right)$ as $f_{2} \circ g_{2}=\operatorname{id}_{M_{3}}$. Hence $x_{2}-g_{2}\left(f_{2}\left(x_{2}\right)\right) \in \operatorname{ker} f_{2}=\operatorname{Imf}_{1}$. Therefore $x_{2} \in g_{2}\left(f_{2}\left(x_{2}\right)\right)+\operatorname{Imf}_{1} \subseteq N+\operatorname{Imf}_{1}$, which implies

$$
M_{2}=\operatorname{Imf}_{1}+N
$$

Suppose $x_{2} \in \operatorname{Imf}_{1} \cap N$. Hence $x_{2}=g_{2}\left(x_{3}\right)$ for some $x_{3} \in M_{3}$; and so $x_{3}=f_{2}\left(g_{2}\left(x_{3}\right)\right)=f_{2}\left(x_{2}\right)$. Since $x_{2} \in \operatorname{Imf} f_{1}=\operatorname{ker} f_{2}$, we
have $f_{2}\left(x_{2}\right)=0$. Overall we get $x_{3}=f_{2}\left(x_{2}\right)=0$. This implies that $x_{2}=g_{2}\left(x_{3}\right)=g_{2}(0)=0$; altogether $\operatorname{Imf}_{1} \oplus \mathrm{~N}=\mathrm{M}_{2}$.
Remark. For (non-commutative) groups, we called a S.E.S. split if (d) holds; and it only implies that the middle group is a semi-direct product of the other groups. If (a) holds, then the middle group is isomorphic to the direct product of the other groups; and its proof is similar to the argument presented above. It is worth pointing out that the above argument holds for groups as well; but it only implies that Img_{2} is a subgroup of G_{2} which is a complement of Imf_{1}. Since Img_{2} is not necessarily a normal subgroup, we can only deduce that their semi-direct product gives us G_{2}.

Basics of Category theory.

We only mention very basic concepts of Category Theory in this class and use it only as a language. A category C has a class of objects $\mathrm{Ob}(C)$ and for any two objects $\mathrm{a}, \mathrm{b} \in \mathrm{Ob}(C)$ it has a class of homomorphisms or arrows $\operatorname{Hom}_{\mathcal{C}}(a, b)$; with the following properties: for $a, b, c \in \operatorname{Ob}(C), f \in \operatorname{Hom}_{\mathcal{C}}(a, b)$, and
$g \in \operatorname{Hom}_{\mathcal{C}}(b, c)$, there is $g \circ f \in \operatorname{Hom}_{\mathcal{C}}(a, c)$ such that
(Associativity) $(\mathrm{f} \circ \mathrm{g}) \circ \mathrm{h}=\mathrm{f} \circ(\mathrm{g} \circ \mathrm{h})$.
(Identity) For any $a \in \operatorname{Ob}(C)$, there is $1_{a} \in \operatorname{Hom}_{C}(a, a)$ such that $1_{a} \circ f=f$ and $g \circ 1_{a}=g$ whenever they are defined. Alternatively the following diagrams are commuting.

Category C is called a small category if

$$
\operatorname{Ob}(C) \text { and } \cup_{a, b \in \operatorname{Ob}(\mathcal{C})} \operatorname{Hom}_{\mathcal{C}}(\mathrm{a}, \mathrm{~b})
$$

are sets; it is called locally small if $\operatorname{Hom}_{\mathcal{C}}(a, b)$ is a set for any $\mathrm{a}, \mathrm{b} \in \mathrm{Ob}(C)$. In this course, we only work with locally small categories. Here are a few examples:
Set. Objects are sets, and for any two sets a, b,

$$
\operatorname{Hom}_{S e t}(a, b):=\{f: a \rightarrow b \mid f \text { is a function }\}
$$

(with the caveat of the figuring out what it means to have a function to the empty set or from an empty set!)

Grp. Objects are groups, and for any two groups a, b,
$\operatorname{Hom}_{G r p}(a, b):=\{f: a \rightarrow b \mid f$ is a group homomorphism $\}$.
Ab. Objects are abelian groups, and for any two abelian groups a, b,
$\operatorname{Hom}_{\mathcal{A} b}(a, b):=\{f: a \rightarrow b \mid f$ is a group homomorphism $\}$.
A-mod. Objects are groups, and for any two groups a, b,

$$
\operatorname{Hom}_{\mathcal{A}-\bmod (\mathrm{a}, \mathrm{~b})}:=\operatorname{Hom}_{\mathcal{A}}(\mathrm{a}, \mathrm{~b}) .
$$

One can think about a category as a directed graph with labeled edges (vertices are objects of the category, and edges are given by homomorphisms). Now having two such directed graphs, one can look for possible graph homomorphisms. Suppose \mathcal{C} and \mathcal{D} are two categories. We say $\mathcal{F}: \mathcal{C} \rightarrow \mathcal{D}$ is a functor if
(a) for any $\mathrm{a} \in \mathrm{Ob}(\mathcal{C}), \mathcal{F}(\mathrm{a}) \in \operatorname{Ob}(\mathcal{D})$;
(b) for any $\phi \in \operatorname{Hom}_{\mathcal{C}}(\mathrm{a}, \mathrm{b}), \mathcal{F}(\phi) \in \operatorname{Hom}_{\mathcal{D}}(\mathcal{F}(\mathrm{a}), \mathcal{F}(\mathrm{b}))$; and
(c) $\mathcal{F}(\phi \circ \psi)=\mathcal{F}(\phi) \circ \mathcal{F}(\psi)$ whenever they are defined.
(d) $\mathcal{F}\left(1_{\mathrm{a}}\right)=1_{\mathcal{F}(\mathfrak{a})}$ for any $\mathrm{a} \in \operatorname{Ob}(C)$

In the next lecture we will start with two general examples of functors.

