Math200b, lecture 9

Golsefidy

Exact sequences.

As in group theory, we use exact sequencers in order to
split a problem on modules into easier pieces; and sometimes
reduce it to a problem about simple modules.

Defintion. (a) We say M, LN M AN M., is an exact
sequence if M;’s are (left) A-modules, f; € Homa(Mi, Miq),
and Imf; = ker fi4;; in particular f;1; o f; = 0.

(b) An exact sequence of the form 0 — M; - My — M3 —
0 is called a Short Exact Sequence (S.E.S.).

(€) (p1, P2, P3) is called a S.E.S. homomorphism if ¢; €

Homa (M, M ), the following diagram is commuting, and each



row is a S.E.S.:

0O — My — My —— M3 —— 0

I e e

0 —> M, —> M), — M}, — 0

(1, do, d3) is called a S.E.S. isomorphism if it is a S.E.S. homo-
morphism and ¢;’s areisomorphisms. (Itis equivalent to abet-
ter definition: there exists a S.E.S. homomorphism ({1, 12, P3)
in the reverse direction such that together with ¢i’s one gets a

commuting diagram.)

Lemmal (a) 0 - M, 4 M, is an exact sequence if and only if f
is injective.

(b) M, iR My — 0 is an exact sequence if and only if f is surjective.
(c) Suppose 0 — M, N M, LN M3 — 0is a S.E.S.; then it is

isomorphic to
0 — Imf, — My — My/Imf; — 0,

where Tt is the quotient map.

¢
Proof. (a) 0 = M; — My is an exact sequence & 0 = ker f & f

is injective.



f
(b) M} — My — 0 is an exact sequence & Imf = ker0 = My, &
f is surjective.

(c) By the first isomorphism theorem,
f_g : Mg/ker fo — Imfg, f_Q(X + ker fg) = fg(X)
is a well-defined isomorphism. Since
f1 fa
0-M; > My, > M3—>0

is a S.E.S., f; is injective and f; is surjective, and Imf; = ker fs.
— ~
Solet 0 :=fy : Mjs— M,y/Imf;; and notice that

9’(f2(x)) = x + Imf;.

Since f, is injective, 6 : M, N Imfy,0(x) := fi(x) is an iso-
morphism. Overall we get that the following is a commuting

diagram and claim follows:

0 —> M, — 3 My —2 3 My ——3 0

\L? 0 \leMQ \L? o’

0 — Imf; — My —= M,/Imf; — 0



As we have pointed out earlier, when we are working with
aS.E.S.

O—>M11>M22>M3—>0

we often want to gain some information on M, assuming we
have already some knowledge on M, and M3. The same is
true for a S.E.S. homomorphism (¢4, ¢2, ¢3). The next lemma

is a perfect example of such a result.

Lemma 2 (Short Five Lemma) Suppose (b1, &2, d3) is a S.E.S.
homomorphism. Then

(@) If ¢, and &3 are injective, then o is injective.

(b) If &1 and &3 are surjective, then &, is surjective.

(c) If &1 and b3 are isomorphisms, then &, is an isomorphism.

Proof. (a) Suppose x2 € ker ¢o. Then as you can see in the
following diagram, ¢5(fa(x2)) = 0. Since ¢s3 is injective, fo(x2) =
0. Hence x; € ker fy = Imfy; say xo = fi(x1). And so f}($p1(x2)) =

$a(fi(x1)) = da(x2) = 0. Since f] and ¢, are injective, we deduce



that x; = 0. Thus x, = f1(x;) = 0; and claim follows.

fa(x
f1 2 2(x2)
O—>M1TM2# ]70
CD(Xl)ﬁ igO
0—— M M’—>M’—>o
1 f,l 2 f; 3

(b) Suppose y;, € M. Since ¢35 is surjective, there is x3 € M3
such that ¢s(x3) = f,(y}). As fy is surjective, there is xo € My
such that fa(x2) = x3. Therefore fi(y;) = fi($pa(x2)), which
implies that y;, — ¢a(x2) € ker f, = Imf’. Since ¢, is surjective,
there is x; € M, such that ¢(x;) = x]. And so y;, — da(x2) =
$o(f1(x1)), which implies Yy}, = $a(x2+f1(x1)) € ImPs; and claim

follows.
X1 —_— f1(X1) 7?_2 ’ X3
L} To
0— M, 9 Mj {— 0
i by ‘ b,y
0 Mll f’ 2 CPQ(X%) Mé 0




(c) This is an immediate consequence of parts (a) and (b). W
Remark. There is a version of Short Five Lemma that involves
exact sequences of the form M; - My - M3 - My, — Mj;
and that is why it is called Short Five Lemma.

One way to construct a S.E.S. with a given M; and M is by
considering My := M; & M3, x; — (x1,0), and (x1,x3) — xs.
In the next theorem, we will see four statements that imply a

given S.E.S. is of this form.

Theorem 3 (Splitting conditions) Suppose
O—>M11>M22>M3—>0

is a S.E.S.; then the following statements are equivalent.

(a) AN C M, which is a submodule and My = N @ Imf;.

(b) dg; : My — M, such that g; o f; = idm,.

(©) b : My — My & My such that (idw,, ¢, idm,) is an isomor-
phism of S.E.S..

(b) g2 : M3 — My such that f3 o go = idpm,.

Proof. ((a) = (b)) Since f; is injective,

f_1 - M,y N Imfl,f_l(x) = f1(x)
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is an isomorphism. Let 7t : My = N & Imf; — Imf; be the
projection to the second component; that means for x € N and
y € Imf;, we have (x + y) = y. Let g; := f_l_l om: My — M.
It is easy to check that g; o f; = idwm,.

(b) = (c)) Let d : My — M; & M3, d(x2) = (gi(x2), fa(x2)).
Then it is easy to see that (idm,, ¢, idm,) is a S.E.S. homomor-
phism. Since idp, and idm, are isomorphisms, by Short Five
Lemma ¢ is an isomorphism; and claim follows.

((c) = (d)) Following the arrows idy,, 15, and ¢!, we get the

desired homomorphism gs:

0 —> M; — 3 My —2 3 My —3 0

K_/
P e

o—>M1L>M1@M3—>E”M3—>0

12
((d)=(a)) LetN :=Imgs. Foranyx, € My, we have fa(ga(fa(x2))) =
f2(x2) as fy o go = 1d]\/[3 Hence x5 — 92(f2(x2)) € ker fy = Imfy.
Therefore x; € ga(fa(x2)) + Imf; € N + Imf;, which implies

M, = Imf; + N.

Suppose x; € Imf; N N. Hence x; = ga(x3) for some x3 € Ms;

and so X3 = f2(92(X3)) = fg(Xg). Since X9 € Imf; = kerfy, we
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have fy(x2) = 0. Overall we get x3 = fy(x2) = 0. This implies
that x, = ga(x3) = g2(0) = 0; altogether Imf; & N = M. H
Remark. For (non-commutative) groups, we called a S.E.S.
split if (d) holds; and it only implies that the middle group is a
semi-direct product of the other groups. If (a) holds, then the
middle group is isomorphic to the direct product of the other
groups; and its proof is similar to the argument presented
above. It is worth pointing out that the above argument holds
for groups as well; but it only implies that Imgs is a subgroup of
Gy which is a complement of Imf,. Since Imgs is not necessarily

a normal subgroup, we can only deduce that their semi-direct

product gives us Gs.

Basics of Category theory.

We only mention very basic concepts of Category Theory
in this class and use it only as a language. A category C has a
class of objects Ob(C) and for any two objects a,b € Ob(C) it
has a class of homomorphisms or arrows Home(a, b); with the

following properties: for a,b,c € Ob(C), f € Home(a, b), and



g € Home(b, ¢), there is g o f € Home(a, ¢) such that
(Associativity) (fo g)oh =fo(goh).

(Identity) For any a € Ob(C), there is 1, € Hom¢(a, a) such
that 1,0 f = f and g o 1, = g whenever they are defined.

Alternatively the following diagrams are commuting.

(hog)of

a—f>b ykc n;d, 1ada—f>b@1b.
l4

Category C is called a small category if
Ob(C) and Ua,beOb(C) HOHIC(Cl7 b)

are sets; it is called locally small if Hom¢(a, b) is a set for any
a,b € Ob(C). In this course, we only work with locally small
categories. Here are a few examples:

Set. Objects are sets, and for any two sets a, b,
Homset(a,b) := {f : a — b|fis a function};

(with the caveat of the figuring out what it means to have a

function to the empty set or from an empty set!)
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Grp. Objects are groups, and for any two groups a, b,
Homgrp(a,b) := {f : a — b| fis a group homomorphism}.

Ab. Objects are abelian groups, and for any two abelian

groups a, b,
Homap(a,b) := {f: a — b|fis a group homomorphism}.
A-mod. Objects are groups, and for any two groups a, b,
Homa _mod(ap) := Homa(a, b).

One can think about a category as a directed graph with la-
beled edges (vertices are objects of the category, and edges are
given by homomorphisms). Now having two such directed
graphs, one can look for possible graph homomorphisms.
Suppose C and D are two categories. Wesay ¥ : C — D isa
functor if
(a) for any a € Ob(C), F (a) € Ob(D);
(b) forany ¢ € Home(a, b), F (d) € Homp(F (a), £ (b)); and
(€) F (b o) = F(d) o F () whenever they are defined.
(d) F(1a) = 1 (q) for any a € Ob(C)
In the next lecture we will start with two general examples of

functors.
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