
Math200b, lecture 8

Golsefidy

Char polynomial of companion matrices

In the previous lecture we proved that the characteristic
polynomial of a matrix (with entries in a field k) is the product
of its invariant factors; this had been done modulo the fact
that the characteristic polynomial of the companion matrix of
a monic polynomial g(x) ∈ k[x] is g(x).

Lemma 1 Suppose g(x) = xn + cn−1xn−1 +⋯ + c0 ∈ k[x] and c(g)
is the companion matrix of g. Then fc(g)(x) = g(x) where fc(g)(x)
is the characteristic polynomial of c(g).
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Proof. We proceed by induction on degg. Base of induction is
clear; so we focus on the induction step:

fc(g)(x) =det(xI − c(g)) = det

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

x 0 ⋯ 0 c0

−1 x ⋯ 0 c1

0 −1 ⋯ 0 c2

⋮ ⋮ ⋱ ⋮ ⋮

0 0 ⋯ −1 x + cn−1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

= xdet

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

x ⋯ 0 c1

−1 ⋯ 0 c2

⋮ ⋱ ⋮ ⋮

0 ⋯ −1 x + cn−1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

+ (−1)n+1c0 det

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−1 x ⋯ 0

0 −1 ⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯ −1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

by expanding determinant with respect to the first row. Notice
that the first matrix is xI− c(xn−1 + cn−1xn−2 +⋯+ c1); and so by
the induction hypothesis the first term is just

x(xn−1 + cn−1x
n−2 +⋯ + c1).

The matrix in the second term is an upper-triangular matrix
and so its determinant is the product of its diagonal entries
and so the second term is (−1)n+1c0(−1)n−1 = c0. Overall we
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get

fc(g)(x) = x(x
n−1 + cn−1x

n−2 +⋯ + c1) + c0 = g(x);

and claim follows. ∎

Char polynomial of nilpotent matrices

Let’s see how the theorem thatwe proved about the connec-
tions between characteristic polynomial, minimal polynomial
and invariant factors can help us to get a better understanding
of nilpotent matrices.

Proposition 2 Suppose k is a field and N ∈ Mn(k) is a nilpotent
matrix. Then Nn = 0.

Proof. Since N is nilpotent, Nm = 0 for some m ∈ �+. Hence
mN(x)∣xm where mN(x) is the minimal polynomial of N; and
so mN(x) = xl for some positive integer l. Since any irre-
ducible factor of the characteristic polynomial fN(x) is also an
irreducible factor of mN(x) and x is the only irreducible fac-
tor of mN(x), we deduce that x is the only irreducible factor
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of fN(x); hence fN(x) is also a power of x. As deg fN(x) = n,
fN(x) = xn. Therefore by the Cayley-Hamilton theoremNn = 0.
∎

Notice that all n-by-n nilpotent matrices have the same
characteristic polynomial; but they are not necessarily similar,
for instance one can be zero and the other non-zero. Even if
mN1(x) =mN2(x), we cannot deduce that they are similar. By
Rational Canonical Form, we need to know all the invariant
factors in order to get similarity; andmN(x) and fN(x) cannot
give us all the invariant factors unless we were told that there
are at most two invariant factors or degmN(x) = deg fN(x).

Jordan form

Can we get a better understanding of a matrix up to sim-
ilarity assuming all of its eigenvalues are in k? For instance
over � we know any polynomial can be written as a product
of degree one terms; and so all the eigenvalues of a given com-
plex matrix is in �. Or all the eigenvalues of a nilpotent matrix
are 0. Can this be used to get a better understanding of the
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similarity class of a matrix A? We have already seen that the
similarity class of A can be completely understood by looking
at the k[x]-module VA. And if f1∣f2∣⋯∣fm are invariant factors
of A, then

VA ≃ k[x]/⟨f1(x)⟩ ⊕⋯⊕ k[x]/⟨fm(x)⟩. (1)

By our assumption there are distinct λi’s in k such that

fA(x) =
l

∏
i=1

(x − λi)
ni.

Since fA(x) = ∏mi=1 fi(x), there are nij ∈ �≥0 such that

fj(x) =
l

∏
i=1

(x − λi)
nij.

Wenotice that, since λi’s are distinct, (x−λi)nij are pairwise co-
prime for a fixed j and 1 ≤ i ≤ l. And so by Chinese Remainder
Theorem for k[x] we have that

k[x]/⟨fj(x)⟩
φ
Ð→

l

⊕
i=1
k[x]/⟨(x − λi)

nij⟩,

φ(p(x) + ⟨fj(x)⟩ ∶= (p(x) + ⟨(x − λi)
nij⟩)li=1, (2)

is a k[x]-module isomorphism (and also ring isomorphism).
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Let’s quickly prove the Chinese Remainder Theorem for
PIDs. What we will prove holds for any unital commutative
ring; but here for the sake of brevity we refrain from going to
the general case.

Theorem 3 (Chinese Remainder Theorem for PIDs) SupposeD
is a PID, ai ⊴D, and ai + aj =D is i ≠ j (co-primeness). Then

φ ∶D/
n

⋂
i=1
ai →

n

⊕
i=1
D/ai,φ(a +

n

⋂
i=1
ai) ∶= (a + ai)

n
i=1 (3)

is an D-module and ring isomorphism.

Proof. Let φ̃ ∶ D → ⊕
n
i=1D/ai, φ̃(a) ∶= (a + ai)

n
i=1. Then clearly

φ̃ is a ring and D-module homomorphism. So by the first
isomorphism theorem (in ring theory andmodule theory), we
have that

φ ∶D/ker φ̃→
n

⊕
i=1
D/ai,φ(a) ∶= (a + ai)

n
i=1

is awell-defined injective ring andD-module homomorphism.
It is easy to see that ker φ̃ = ⋂

n
i=1 ai; and so φ given in (3) is a

well-defined injectiveD-module and ring homomorphism. To
finish the proof, we need to show that φ is surjective. To do
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so it is enough to show that (0,⋯, 0, 1
®
i−th

, 0,⋯, 0) is in the image

of φ for any i. This means we need to find a ∈ D such that
a + ai = 1 + ai and a ∈ ⋂j≠i aj; this is equivalent to say that
ai +⋂j≠i aj =D.

Since D is a PID, there are aj ∈ D such that aj = ⟨aj⟩. As
ai + aj = D, we have that gcd(ai,aj) = [1]; that means that ai
and aj do not have any common irreducible factor. Notice that,
since D is a PID, ⋂j≠i aj is generated by lcm(aj)j≠i; and, as aj’s
are pairwise co-prime,

lcm(aj)j≠i =∏
j≠i

aj and gcd(ai,∏
j≠i

aj) = [1].

Hence ai +⋂j≠i aj = ⟨ai⟩ + ⟨∏j≠iaj⟩ =D; and claim follows. ∎

Remark. Weused thePID condition only in the last paragraph;
and this part can be proved without the PID assumption.
Going back to understanding the similarity class of A, by (1)
and (2) we have

VA ≃
l

⊕
i=1

m

⊕
j=1
k[x]/⟨(x − λi)

nij⟩. (4)

To get back to linear algebra, we need to have a “nice" matrix
representation of x× ⋅ (multiplication by x) in k[x]/⟨(x−λi)nij⟩;
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this is needed as A is a matrix representation of the multi-
plication by x in VA. We can take the companion matrix of
(x−λi)

nij; but then binomial coefficients will be needed which
makes it hard to work with the given matrix. If λi = 0, then the
companion matrix is easy to work with. So first we shift and
then look at the matrix representation:
θ̃ ∶ k[x] → k[y], θ̃(f(x)) ∶= f(y + λ) is a k-linear ring isomor-

phism (we say it is a k-algebra isomorphism); and so we get a
k-algebra isomorphism θ ∶ k[x]/⟨(x − λ)n⟩ → k[y]/⟨yn⟩. Hence
we get the following commuting diagram:

k[x]/⟨(x − λ)n⟩ k[y]/⟨yn⟩

k[x]/⟨(x − λ)n⟩ k[y]/⟨yn⟩

×x

θ

×(y+λ)

θ

In the right column, multiplication by y can be represented
by the companion matrix of yn; so ×(y+λ) can be represented
by

Jn(λ) ∶=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

λ

1 λ

⋱ ⋱

1 λ

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.
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The above commuting diagram implies that multiplication by
x in k[x]/⟨(x − λ)n⟩ can be also represented by Jn(λ); we call
Jn(λ) a Jordan block. Altogether we get the following:

Lemma 4 k[x]/⟨(x − λ)n⟩ ≃ VJn(λ) as k[x]-modules.

By Lemma 4 and (4) we have

VA ≃
l

⊕
i=1

m

⊕
j=1
VJnij(λi)

≃ Vdiag(Jnij(λi))i,j

ask[x]-modules; and soA is similar to thematrixdiag(Jnij(λi))i,j
that has Jordan blocks Jnij(λi) on its diagonal. This is called a
Jordan Form of A.

Theorem 5 (Jordan Form) Suppose k is a field, A ∈ Mn(k), all
the eigenvalues of A are in k, and λ1, . . . ,λl are distinct eigenvalues
ofA. Then there are unique increasing sequences (with finitely many
terms) of positive integers n1j ≤ n2j ≤ ⋯ for 1 ≤ i ≤ l such that A is
similar to diag(Jnij(λi))i,j.

Proof. We have already proved the existence part; so we focus
on the uniqueness part. SupposeA is similar to diag(Jnij(λ′i))i,j;
comparing eigenvalues of both sides we deduce that λ′i’s are
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a reordering of λi’s. So after relabelling, if needed, we can
and will assume that λi = λ′i. To show the uniqueness of nij’s,
similar to our approach in the uniqueness part of Rational
Canonical Form, we will show that nij’s can be determined by
the k[x]-module structure of VA; and the latter is determined
uniquely by the similarity class of A. So we get that Jordan
form can be determined by the similarity class of A (up to a
reordering of its Jordan blocks).

Since A is similar to diag(Jnij(λi))i,j, we have

VA ≃ Vdiag(Jnij(λi))i,j
≃⊕
i,j
VJnij(λi)

≃⊕
i,j
k[x]/⟨(x − λi)

nij⟩

as k[x]-modules. Similar to the proof of the uniqueness part
of Rational Canonical Form, we will consider (x−λi)

sVA
(x−λi)s+1VA

; to be
precise in the proof of the Rational Canonical Form, we first
localized

Note that in a PID D, if gcd(a,b) = 1, then there are r, s ∈D
such that ar + bs = 1; and so (a + ⟨b⟩)(r + ⟨b⟩) = 1 + ⟨b⟩ which
implies that a + ⟨b⟩ ∈ (D/⟨b⟩)×.

By the above fact, (x− λr)s + ⟨(x− λj)
nij⟩ is a unit in the ring

k[x]/⟨(x − λj)
nij⟩ for any positive integer s and r ≠ j; and so

multiplication by (x − λr)s does not change k[x]/⟨(x − λj)nij⟩.
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Therefore for any non-negative integer swe have

(x − λr)
sVA ≃ ⊕

nir>s

(x − λr)sk[x]

(x − λr)nirk[x]
⊕ ⊕
i,j≠r

k[x]

(x − λj)
nijk[x]

;

and so

(x − λr)sVA
(x − λr)s+1VA

≃ ⊕
nir>s

(x − λr)sk[x]/(x − λr)nirk[x]

(x − λr)s+1k[x]/(x − λr)nirk[x]

≃ ⊕
nir>s

(x − λr)sk[x]

(x − λr)s+1k[x]
≃ ⊕
nir>s

k[x]

(x − λr)k[x]
(5)

(To see why the last isomorphism hold, consider

k[x]
θ
Ð→

(x − λr)sk[x]

(x − λr)s+1k[x]
,θ(p) ∶= (x − λr)

sp + ⟨(x − λr)
s+1⟩;

it is easy to see that θ is a surjective k[x]-module homomor-
phism and its kernel is (x − λr)k[x]; thus by the first isomor-
phism theorem claim follows.)

We also know that k[x]
(x−λr)k[x]

≃ V[λr]; and so dimk
k[x]

(x−λr)k[x]
= 1.

Therefore by (5) we deduce

dimk
(x − λr)sVA
(x − λr)s+1VA

= ∣{i∣nir > s}∣. (6)

The above equation implies that ∣{i∣nir > s}∣ only depends
on the module structure of VA; and so they just depend on
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the similarity class of A. Next we observe that the sequence
{∣{i∣nir > s}∣}s uniquely determines {nir}i; and the uniqueness
of Jordan form follows. This part of argument is identical to
what we have done in the proof of rational canonical form
theorem. For a possible future use we write it as a separate
lemma.

Lemma 6 Suppose n1 ≤ n2 ≤ ⋯ ≤ nv is an increasing sequence of
positive integers. Let ms ∶= {i∣ni > s} for non-negative integers s.
Then {ni} is uniquely determined by {ms}s.

Pictorial proof.

1 2 ⋯ n1 . . . n2 ⋯ nv−1 ⋯ nv

1 2 ⋯ n1 ⋯ n2 ⋯ nv−1

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

1 2 ⋯ n1 ⋯ n2

1 2 ⋯ n1

m0 m1 ⋯ mn1−1 ⋯ mn2−1 ⋯ mnv−1−1 ⋯ mnv−1

From this picture we

also see that
nv−i = ∣{j∣mj > i}∣.

1 ∎ ∎
1Special thanks go to B. Touri for teaching me how to create this picture!
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Simple modules

Now that we have seen how important and instrumental
module theory is, we try to study them a bit more systemati-
cally. As in group theory, we can start with simplestA-modules
and try to build all the modules out of them.

Definition 7 We say an A-modules M is a simple A-module if 0

andM are its only submodules andM ≠ 0.

Lemma 8 (a) Suppose M1 and M2 are simple A-modules. Then
HomA(M1,M2) ≠ 0 if and only ifM1 ≃M2.

(b) (Schur’s lemma) Suppose M is a simple A-module. Then
EndA(M) is a division ring.

Proof (a) (⇒) Suppose θ ∈ HomA(M1,M2). Then kerθ is a
submodule of M1. Since M1 is a simple A-module, kerθ is
either 0 orM1. As θ is not zero, we deduce that kerθ = 0; and
so θ is injective. We also know that Imθ is a submodule ofM2.
Since M2 is a simple A-module, Imθ is either 0 or M2. Since
θ is not zero, we deduce that θ is surjective. Overall we get
that θ is a bĳective A-module homomorphism; and so it is an
isomorphism, which implies thatM1 ≃M2.
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(⇐) If θ ∶M1 →M2 is an isomorphism, then θ ≠ 0 (Mi’s are
not zero) and θ ∈ HomA(M1,M2).

(b) Suppose θ ∈ EndA(M)∖{0}. By the above argument θ is
an isomorphism; and so θ−1 ∈ EndA(M); and claim follows. ∎

Later we will see how this helps us to detect submodules
of a completely reduciblemodule⊕n

i=1Mi that are isomorphic to
a given simple A-moduleM. This is an important tool in the
proof of Artin-Wedderburn theorem.
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