
Math200b, lecture 7

Golsefidy

Finitely generated modules over a PID

In the previous lecture we proved the fundamental theorem
of finitely generated modules over a PID; here is the extended
version of it which we proved.

Theorem 1 Suppose D is a PID and M is a finitely generated D-
module. Then there are d1d2⋯dm in D ∖ {0} such that

M ≃Dn ⊕
m


i=1

D⟨di⟩;

and n and the proper non-zero principal ideals ⟨di⟩’s are unique
with these properties. Moreover rank(M) = n, under the above
isomorphism we have Tor(M) ≃ m

i=1DdiD, and ∀m ∈ Max(D)
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and non-negative integer k

dimDm
mkMm

mk+1Mm
= {ivm(di) > k}. (1)

Note: in class we used irreducible elements to describe (1);
since in a PID a non-zero maximal ideal is generated by an
irreducible element and vice versa an irreducible element gen-
erates a maximal non-zero ideal, these approaches are essen-
tially the same.

We continue with two immediate corollaries of this result.
Let’s recall that when D is an integral domain and M is a
D-module

Tor(M) ∶= {m ∈M ∃d ∈D ∖ {0},dm = 0}

is a submodule of M. A D-module is called torsion free if
dm = 0 implies either d = 0 or m = 0. It is clear that a D-
module is torsion free if and only if Tor(M) = 0. And a free
D-module is torsion free. As a corollary of the fundamental
theorem of finitely generated modules over a PID we get the
converse.

Corollary 2 Suppose D is a PID and M is a finitely generated
D-module. Then M is a free module if and only if M is torsion free.
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Proof. (⇒) is clear. To show (⇐), we notice that by Funda-
mental Theorem of finitely generated of modules over a PID,
M ≃Dn⊕m

i=1D⟨di⟩ (for some di ∈D∖ ({0}∪D×)) and under
this isomorphism Tor(M) ≃ m

i=1DdiD. Since M is torsion
free, Tor(M) = 0; so M ≃Dn; and claim follows. ∎

Note. In the above corollary it is crucial that M is finitely
generated. For instance  is a torsion free -module; but it is
not a free -module. Let’s see why  is not a free -module.

Method 1. Any two elements of  are -linearly depen-
dent; and so rank() = 1. Hence if  is a free -module, then
it should be isomorphic to ; that means it should be a cyclic
abelian group which is a contradiction. (Why?)

Method 2. Let θ ∶  → i∈I be a -module homomor-
phism. Then, for any n ∈  ∖ {0} and a ∈ , nx = θ(a) has
a solution in i∈I (let x ∶= θ(an)); this implies that all the
coordinates of θ(a) are multiples of n for any non-zero integer
n. Hence θ(a) = 0. So Hom(,i∈I) = 0; in particular  is
not a free -module. (In class we used the above argument
only for n = 2 and deduced that θ cannot be surjective; as you
can see here the same idea gives us much more. And as it was
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mentioned during lecture the same statement holds for the so
called divisible groups (these are groups were nx = a has a
solution for any non-zero integer n and a ∈ G.))

Minimum number of generators. How can we find the
minimum number d(M) of generators of a finitely generated
D-module M when D is a PID? Suppose

M ≃Dn ⊕
m


i=1

D⟨di⟩

for d1d2⋯dm ∈ D ∖ ({0} ∪D×). Suppose p is an irreducible
factor of d1. As d1di, pdi for any i. Therefore

pM ≃ (pD)n ⊕
m


i=1
(pDdiD);

and so
M

pM
≃  D

pD

n

⊕
m


i=1

(DdiD)
(pDdiD)

≃  D

pD

n+m

.

Since DpD is a field, by linear algebra we know that

d(MpM)


as a DpD-module

= dimDpDMpM =m +n.

Since the scalar multiplication of MpM as a DpD-module is
the same as the scalar multiplication of MPM as a D-module,
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we have that the minimum numbers of generators of MpM
as a D-module and as a DpD-module are the same.

We also notice that, if X generates a module M, then the
image of X under the quotient map M → MN, for any sub-
module N, generates MN; and so d(M) ≥ d(MN) for any
submodule N. Hence

d(M) ≥ d(MpM) =m +n.

Conversely {ei}m+ni=1 generates (pD)n ⊕m
i=1(pDdiD) as a D-

module where ei has 1 in its i-th coordinate and 0 in the rest
(here 1 refers either to the identity of D or the identity of
DdjD for some j); and so d(M) ≤m +n. So overall we get for
d1d2⋯dm ∈D∖({0}∪D×) and M =Dn⊕m

i=1D⟨di⟩, we have

rank(M) = n, and d(M) =m +n;

in particular, d(M) = rank(M) if and only if M is a free D-
module. In your HW assignment you will prove that the same
statement holds for an arbitrary unital commutative ring D.

Rational canonical form. Suppose k is a field and A ∈
Mn(k). As we discussed earlier in the course, we can view kn

5



as a k[x]-module by defining x ⋅v ∶= Av; more explicitly for any
polynomial f(x) ∶= ∑∞i=0aixi and v ∈ kn we have

f(x) ⋅ v ∶=
∞

i=0

aiA
iv.

In order to remember that the above k[x]-module structure of
kn depends on A we denote it by VA. The first question that
we address is how much the module structure of VA depends
on A.

Lemma 3 VA ≃ VB if and only if A and B are similar; that means
∃g ∈ GLn(k) such that A = g−1Bg.

Proof. (⇒)Supposeθ ∶ VA → VB is ak[x]-module isomorphism.
Then for any v ∈ kn we have

θ(x ⋅ v
in VA

) = x ⋅ θ(v)


in VB

;

and so θ(Av) = Bθ(v). Suppose g ∈Mn(k) is the matrix repre-
sentation of θ in the standard basis; that means for any v ∈ kn

(in a column form) we have θ(v) = gv. Since θ is a bĳection,
g ∈ GLn(k). Therefore we have that for any v ∈ kn

gAv = θ(Av) = Bθ(v) = Bgv, which implies A = g−1Bg.
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(⇐) Let θ ∶ kn → kn,θ(v) ∶= gv. Then for any v ∈ VA and
f(x) ∶= ∑∞i=0 cixi ∈ k[x]we have

θ(f(x) ⋅ v


in VA

) =g
∞

i=0

ciA
iv = g

∞

i=0

ci(g−1Bg)iv

=g
∞

i=0

cig
−1Bigv = 

∞

i=0

ciB
i gv

θ(v)

= f(x) ⋅ θ(v)


in VB

;

and so θ ∶ VA → VB is a k[x]-module isomorphism. ∎
Next we notice that rank(VA) = 0 as a k[x]-module; and so:

Proposition 4 There are unique monic positive degree polynomials
f1f2⋯fm ∈ k[x] such that

VA ≃ k[x]⟨f1(x)⟩ ⊕⋯⊕ k[x]⟨fm(x)⟩

as k[x]-modules.

Proof. If rank(VA) ≠ 0, then k[x] can be embedded into VA

(as a k[x]-module); this implies that dimkVA = ∞, which is a
contradiction. Since dimkVA = n <∞, VA is a finitely generated
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k[x]-module. Since k[x] is a PID, by Theorem 1 and having
rank(VA) = 0 we deduce that there are polynomials f1f2⋯fm ∈
k[x] ∖ ({0} ∪ k[x]×) such that

VA ≃ k[x]⟨f1(x)⟩ ⊕⋯⊕ k[x]⟨fm(x)⟩

as k[x]-module. As k[x]× = k×, we have that deg fi ≥ 1; and
after multiplying fi’s by some units we can assume that fi’s are
monic. And uniqueness follows from the uniqueness part of
Theorem 1 and the fact that two different monic polynomials
cannot generate the same principal ideal. ∎
Next we would like to see if k[x]⟨f(x)⟩ is isomorphic to VC for
some C ∈Mn(k).

Lemma 5 Suppose f(x) ∈ k[x] and deg f = n > 0. Then {1, . . . ,xn−1}
is a k-basis of k[x]⟨f(x)⟩, where xi ∶= xi + ⟨f(x)⟩; in particular
dimk k[x]⟨f(x)⟩ = deg f.

Proof. This is an immediate corollary of long division: for
a(x) ∈ k[x], let q(x) and r(x) be the quotient and remainder of
a(x) divided by f(x), respectively. So a(x) = f(x)q(x) + r(x)
and r(x) = ∑n−1

i=0 cixi; thus

a(x) + ⟨f(x)⟩ = r(x) + ⟨f(x)⟩ =
n−1

i=0

cixi.
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This implies that the k-span of {xi}n−1i=0 is k[x]⟨f(x)⟩.
If ∑n−1

i=0 cixi = 0, then ∑n−1
i=0 cixi ∈ ⟨f(x)⟩. Since the only mul-

tiple of f(x) that has degree less than degree of f(x) is zero,
we get that ∑n−1

i=0 cixi; this implies that ci = 0 for any i, which
means {xi}n−1i=0 consists of k-linearly independent elements. ∎

To find C ∈ Mn(k) in a way that k[x]⟨f(x)⟩ becomes iso-
morphic to VC as a k[x]-module, we have to focus on the k-
linear map of multiplying by x:

k[x]⟨f(x)⟩ ×x→ k[x]⟨f(x)⟩;

(recall that in VC multiplication by x is given by C). We will
write down the matrix representation of ×x in the basis {xi}n−1i=0 :
to find the i-th column we have to multiply xi by x and then
write it as a linear combination of elements of {xi}n−1i=0 . So for
0 ≤ i < n−1, we simply have x ⋅xi = xi+1, and for the last column
we have

x ⋅ xn−1 = xn = −c0 − c1x −⋯− cn−1xn−1

where f(x) = xn+cn−1xn−1+⋯+c0. Hence the associated matrix
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is

c(f) ∶=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 ⋯ 0 −c0

1 0 ⋯ 0 −c1

0 1 ⋯ 0 −c2

⋮ ⋮ ⋱ ⋮ ⋮
0 0 ⋯ 1 −cn−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

c(f) is called the companion matrix of f. Overall we proved:

Proposition 6 Suppose f(x) ∈ k[x] is a monic positive degree poly-
nomial. Then

k[x]⟨f(x)⟩ ≃ Vc(f)

as k[x]-module.

Theorem 7 (Rational canonical form) Suppose k is a field and
A ∈Mn(k). Then there are unique monic positive degree polynomi-
als f1f2⋯fm ∈ k[x] such that A is similar to

⎛
⎜⎜⎜⎜⎜⎜
⎝

c(f1) 0 ⋯ 0

0 c(f2) ⋯ 0

⋮ ⋮ ⋱ ⋮
0 0 ⋯ c(fm)

⎞
⎟⎟⎟⎟⎟⎟
⎠

.
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Proof. (Existence) By Proposition 4 there are unique monic
positive degree polynomials f1f2⋯fm ∈ k[x] such that

VA ≃k[x]⟨f1(x)⟩ ⊕⋯⊕ k[x]⟨fm(x)⟩

≃Vc(f1) ⊕⋯⊕Vc(fm) (by Proposition 6)

≃Vdiag(c(f1),...,c(fm));

and so, by Lemma 3, A and diag(c(f1), . . . ,c(fm)) are similar
which gives us the existence part.

(Uniqueness) Suppose A is similar to diag(c(f1), . . . ,c(fm))
and diag(c(f1), . . . ,c(fm)) for some monic positive degree poly-
nomials f1f2⋯fm and f1f2⋯fm. So by Lemma 3

Vdiag(c(f1),...,c(fm)) ≃ Vdiag(c(f1),...,c(fm))
;

therefore

Vc(f1) ⊕⋯⊕Vc(fm) ≃ Vc(f1) ⊕⋯⊕Vc(f
m)

.

Hence by Proposition 6

k[x]⟨f1(x)⟩⊕⋯⊕k[x]⟨fm(x)⟩ ≃ k[x]⟨f1(x)⟩⊕⋯⊕k[x]⟨fm(x)⟩,

as k[x]-modules. Therefore by the uniqueness part of Theo-
rem 1 claim follows. ∎
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The word rational refers to the fact that this form works for
an arbitrary field.

The monic polynomials f1, . . . , fm in Theorem 7 (Rational
Canonical Form) are called invariant factors of A. Notice that
if fi’s are invariant factors of A, then

VA ≃ k[x]⟨f1(x)⟩ ⊕⋯⊕ k[x]⟨fm(x)⟩.

Let’s recall that the characteristic polynomial fA(x) of A is

fA(x) ∶= det(xI −A).

A monic polynomial mA(x) is called the minimal polynomial
of A if mA(A) = 0 and p(A) = 0 for p(x) ∈ k[x] implies that
mA(x)p(x); alternatively mA(x) is a monic polynomial such
that

⟨mA(x)⟩ = {p(x) ∈ k[x]p(A) = 0}.

Note that one can easily check that the RHS of the above equal-
ity is an ideal of k[x]; and so there is suchmA(x). We will show
the existence by proving that fm (the last invariant factor) sat-
isfies these properties. Convince yourself that if there is a
minimal polynomial it is unique.
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Theorem 8 (Invariant factors and minimal polynomial) Suppose
f1f2⋯fm are invariant factors of A. Then fm is the minimal poly-
nomial of A.

Proof. We know that

VA ≃ k[x]⟨f1(x)⟩ ⊕⋯⊕ k[x]⟨fm(x)⟩,

as k[x]-module. Since fi(x)fm(x), fm(x) times the RHS is zero.
Hence fm(x) ⋅ VA = 0, which means fm(A)kn = 0. Therefore
fm(A) = 0.

Suppose p(A) = 0. Then for any v ∈ kn we have p(A)v = 0;
and so p(x) ⋅ v


in VA

= 0. Therefore p(x)times the RHS is zero; in

particular
p(x) (k[x]⟨fm(x)⟩) = 0.

This implies that fm(x)p(x). And claim follows. ∎
Next we prove a stronger result which implies Cayley-

Hamilton Theorem.

Theorem 9 (Cayley-Hamilton Theorem) fA(A) = 0 where fA is
the characteristic polynomial of A.
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To prove Cayley-Hamilton Theorem it is enough to show that
mA(x)fA(x). So Cayley-Hamilton Theorem is a corollary of
the next theorem.

Theorem 10 Suppose f1f2⋯fm are invariant factors of A. Then
mA(x) = fm(x) and fA(x) = f1(x)f2(x)⋯fm(x); in particular,
mA(x)fA(x) and any irreducible factor of fA(x) is an irreducible
factor of mA(x).

Proof. By Rational Canonical Form theorem, there is g in
GLn(k) such that

g−1Ag = diag(c(f1),⋯,c(fm)).

Hence

g−1(xI −A)g = xI − g−1Ag = diag(xI − c(f1),⋯,xI − c(fm)).

Therefore

fA(x) = det(xI −A) =
m


i=1

det(xI − c(fi)) =
m


i=1

fc(fi)(x).

In the next Lemma we will prove that fc(f)(x) = f(x) for a monic
positive degree polynomial; for now we will assume this and
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continue the proof. And so we have

fA(x) = f1(x)f2(x)⋯fm(x).

By Theorem 8 we know thatmA(x) = fm(x); and somA(x)fA(x).
Now suppose p(x) is an irreducible factor of fA(x); then

p(x) divides ∏m
i=1 fi(x). Since p(x) is prime (k[x] is a PID),

p(x) divides fi(x) for some i. As fi(x)fm(x) for any i, p(x)
divides fm(x) =mA(x); and claim follows. ∎

In the next lecture we will prove fc(f) = f(x) and the Jordan
Canonical Form; and then we get to the more general theory
of modules.
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