Math200b, lecture 7

Golsefidy

Finitely generated modules over a PID

In the previous lecture we proved the fundamental theorem of finitely generated modules over a PID; here is the extended version of it which we proved.

Theorem 1 Suppose D is a PID and M is a finitely generated Dmodule. Then there are $d_1|d_2|\cdots|d_m$ in $D \setminus \{0\}$ such that

$$M \simeq D^n \oplus \bigoplus_{i=1}^m D/\langle d_i \rangle;$$

and n and the proper non-zero principal ideals $\langle d_i \rangle$'s are unique with these properties. Moreover $\operatorname{rank}(M) = n$, under the above isomorphism we have $\operatorname{Tor}(M) \simeq \bigoplus_{i=1}^m D/d_i D$, and $\forall m \in \operatorname{Max}(D)$ and non-negative integer k

$$\dim_{D/\mathfrak{m}} \frac{\mathfrak{m}^{k} \mathcal{M}_{\mathfrak{m}}}{\mathfrak{m}^{k+1} \mathcal{M}_{\mathfrak{m}}} = |\{i|\nu_{\mathfrak{m}}(d_{i}) > k\}|.$$
(1)

Note: in class we used irreducible elements to describe (1); since in a PID a non-zero maximal ideal is generated by an irreducible element and vice versa an irreducible element generates a maximal non-zero ideal, these approaches are essentially the same.

We continue with two immediate corollaries of this result. Let's recall that when D is an integral domain and M is a D-module

$$Tor(\mathbf{M}) \coloneqq \{\mathbf{m} \in \mathbf{M} | \exists \mathbf{d} \in \mathbf{D} \setminus \{0\}, \mathbf{dm} = 0\}$$

is a submodule of M. A D-module is called torsion free if dm = 0 implies either d = 0 or m = 0. It is clear that a D-module is torsion free if and only if Tor(M) = 0. And a free D-module is torsion free. As a corollary of the fundamental theorem of finitely generated modules over a PID we get the converse.

Corollary 2 *Suppose* D *is a PID and* M *is a finitely generated* D*-module. Then* M *is a free module if and only if* M *is torsion free.*

Proof. (⇒) is clear. To show (⇐), we notice that by Fundamental Theorem of finitely generated of modules over a PID, $M \simeq D^n \oplus \bigoplus_{i=1}^m D/\langle d_i \rangle$ (for some $d_i \in D \setminus (\{0\} \cup D^{\times})$) and under this isomorphism $Tor(M) \simeq \bigoplus_{i=1}^m D/d_iD$. Since *M* is torsion free, Tor(M) = 0; so $M \simeq D^n$; and claim follows.

Note. In the above corollary it is crucial that M is finitely generated. For instance \mathbb{Q} is a torsion free \mathbb{Z} -module; but it is not a free \mathbb{Z} -module. Let's see why \mathbb{Q} is not a free \mathbb{Z} -module.

<u>Method 1</u>. Any two elements of \mathbb{Q} are \mathbb{Z} -linearly dependent; and so rank(\mathbb{Q}) = 1. Hence if \mathbb{Q} is a free \mathbb{Z} -module, then it should be isomorphic to \mathbb{Z} ; that means it should be a cyclic abelian group which is a contradiction. (Why?)

<u>Method 2</u>. Let $\theta : \mathbb{Q} \to \bigoplus_{i \in I} \mathbb{Z}$ be a \mathbb{Z} -module homomorphism. Then, for any $n \in \mathbb{Z} \setminus \{0\}$ and $a \in \mathbb{Q}$, $nx = \theta(a)$ has a solution in $\bigoplus_{i \in I} \mathbb{Z}$ (let $x := \theta(a/n)$); this implies that all the coordinates of $\theta(a)$ are multiples of n for any non-zero integer n. Hence $\theta(a) = 0$. So $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Q}, \bigoplus_{i \in I} \mathbb{Z}) = 0$; in particular \mathbb{Q} is not a free \mathbb{Z} -module. (In class we used the above argument only for n = 2 and deduced that θ cannot be surjective; as you can see here the same idea gives us much more. And as it was

mentioned during lecture the same statement holds for the so called <u>divisible groups</u> (these are groups were nx = a has a solution for any non-zero integer n and $a \in G$.))

Minimum number of generators. How can we find the minimum number d(M) of generators of a finitely generated D-module M when D is a PID? Suppose

$$M\simeq D^n\oplus \bigoplus_{i=1}^m D/\langle d_i\rangle$$

for $d_1|d_2|\cdots|d_m \in D \setminus (\{0\} \cup D^{\times})$. Suppose p is an irreducible factor of d_1 . As $d_1|d_i$, $p|d_i$ for any i. Therefore

$$pM \simeq (pD)^n \oplus \bigoplus_{i=1}^m (pD/d_iD);$$

and so

$$\frac{M}{pM} \simeq \left(\frac{D}{pD}\right)^n \oplus \bigoplus_{i=1}^m \frac{(D/d_iD)}{(pD/d_iD)} \simeq \left(\frac{D}{pD}\right)^{n+m}$$

Since D/pD is a field, by linear algebra we know that

$$\underbrace{d(M/pM)}_{\text{as a D/pD-module}} = \dim_{D/pD} M/pM = m + n.$$

Since the scalar multiplication of M/pM as a D/pD-module is the same as the scalar multiplication of M/PM as a D-module,

we have that the minimum numbers of generators of M/pM as a D-module and as a D/pD-module are the same.

We also notice that, if X generates a module M, then the image of X under the quotient map $M \rightarrow M/N$, for any submodule N, generates M/N; and so $d(M) \ge d(M/N)$ for any submodule N. Hence

$$d(M) \ge d(M/pM) = m + n$$

Conversely $\{e_i\}_{i=1}^{m+n}$ generates $(pD)^n \oplus \bigoplus_{i=1}^m (pD/d_iD)$ as a D-module where e_i has 1 in its i-th coordinate and 0 in the rest (here 1 refers either to the identity of D or the identity of D/d_jD for some j); and so $d(M) \le m + n$. So overall we get for $d_1|d_2|\cdots|d_m \in D \setminus (\{0\} \cup D^{\times})$ and $M = D^n \oplus \bigoplus_{i=1}^m D/\langle d_i \rangle$, we have

$\operatorname{rank}(M) = n$, and d(M) = m + n;

in particular, d(M) = rank(M) if and only if M is a free D-module. In your HW assignment you will prove that the same statement holds for an arbitrary unital commutative ring D.

Rational canonical form. Suppose k is a field and $A \in M_n(k)$. As we discussed earlier in the course, we can view k^n

as a k[x]-module by defining $x \cdot v \coloneqq Av$; more explicitly for any polynomial $f(x) \coloneqq \sum_{i=0}^{\infty} a_i x^i$ and $v \in k^n$ we have

$$f(x)\cdot \nu \coloneqq \sum_{i=0}^{\infty} a_i A^i \nu.$$

In order to remember that the above k[x]-module structure of k^n depends on A we denote it by V_A . The first question that we address is how much the module structure of V_A depends on A.

Lemma 3 $V_A \simeq V_B$ *if and only if* A *and* B *are similar; that means* $\exists g \in GL_n(k)$ *such that* $A = g^{-1}Bg$.

Proof. (\Rightarrow) Suppose $\theta : V_A \rightarrow V_B$ is a k[x]-module isomorphism. Then for any $v \in k^n$ we have

$$\theta(\underbrace{\mathbf{x}\cdot\mathbf{v}}_{\operatorname{in}V_{A}})=\underbrace{\mathbf{x}\cdot\theta(\mathbf{v})}_{\operatorname{in}V_{B}};$$

and so $\theta(A\nu) = B\theta(\nu)$. Suppose $g \in M_n(k)$ is the matrix representation of θ in the standard basis; that means for any $\nu \in k^n$ (in a column form) we have $\theta(\nu) = g\nu$. Since θ is a bijection, $g \in GL_n(k)$. Therefore we have that for any $\nu \in k^n$

 $gAv = \theta(Av) = B\theta(v) = Bgv$, which implies $A = g^{-1}Bg$.

(\Leftarrow) Let $\theta : k^n \to k^n, \theta(v) \coloneqq gv$. Then for any $v \in V_A$ and $f(x) \coloneqq \sum_{i=0}^{\infty} c_i x^i \in k[x]$ we have

$$\theta(\underbrace{f(x) \cdot v}_{\text{in } V_{A}}) = g\left(\sum_{i=0}^{\infty} c_{i}A^{i}\right)v = g\left(\sum_{i=0}^{\infty} c_{i}(g^{-1}Bg)^{i}\right)v$$
$$= g\left(\sum_{i=0}^{\infty} c_{i}g^{-1}B^{i}g\right)v = \left(\sum_{i=0}^{\infty} c_{i}B^{i}\right)\underbrace{gv}_{\theta(v)}$$
$$= \underbrace{f(x) \cdot \theta(v)}_{\text{in } V_{B}};$$

and so $\theta : V_A \rightarrow V_B$ is a k[x]-module isomorphism.

Next we notice that $rank(V_A) = 0$ as a k[x]-module; and so:

Proposition 4 *There are unique monic positive degree polynomials* $f_1|f_2|\cdots|f_m \in k[x]$ such that

$$V_A \simeq k[x]/\langle f_1(x) \rangle \oplus \cdots \oplus k[x]/\langle f_m(x) \rangle$$

as k[x]-modules.

Proof. If rank(V_A) $\neq 0$, then k[x] can be embedded into V_A (as a k[x]-module); this implies that dim_k $V_A = \infty$, which is a contradiction. Since dim_k $V_A = n < \infty$, V_A is a finitely generated

k[x]-module. Since k[x] is a PID, by Theorem 1 and having $\operatorname{rank}(V_A) = 0$ we deduce that there are polynomials $f_1|f_2|\cdots|f_m \in k[x] \setminus (\{0\} \cup k[x]^{\times})$ such that

$$V_A \simeq k[x]/\langle f_1(x) \rangle \oplus \cdots \oplus k[x]/\langle f_m(x) \rangle$$

as k[x]-module. As $k[x]^{\times} = k^{\times}$, we have that $\deg f_i \ge 1$; and after multiplying f_i 's by some units we can assume that f_i 's are monic. And uniqueness follows from the uniqueness part of Theorem 1 and the fact that two different monic polynomials cannot generate the same principal ideal.

Next we would like to see if $k[x]/\langle f(x) \rangle$ is isomorphic to V_C for some $C \in M_n(k)$.

Lemma 5 Suppose $f(x) \in k[x]$ and $\deg f = n > 0$. Then $\{\overline{1}, \dots, \overline{x^{n-1}}\}$ is a k-basis of $k[x]/\langle f(x) \rangle$, where $\overline{x^{i}} := x^{i} + \langle f(x) \rangle$; in particular $\dim_k k[x]/\langle f(x) \rangle = \deg f$.

Proof. This is an immediate corollary of long division: for $a(x) \in k[x]$, let q(x) and r(x) be the quotient and remainder of a(x) divided by f(x), respectively. So a(x) = f(x)q(x) + r(x) and $r(x) = \sum_{i=0}^{n-1} c_i x^i$; thus

$$a(x) + \langle f(x) \rangle = r(x) + \langle f(x) \rangle = \sum_{i=0}^{n-1} c_i \overline{x^i}.$$

This implies that the k-span of $\{\overline{x^i}\}_{i=0}^{n-1}$ is $k[x]/\langle f(x) \rangle$.

If $\sum_{i=0}^{n-1} c_i \overline{x^i} = 0$, then $\sum_{i=0}^{n-1} c_i x^i \in \langle f(x) \rangle$. Since the only multiple of f(x) that has degree less than degree of f(x) is zero, we get that $\sum_{i=0}^{n-1} c_i x^i$; this implies that $c_i = 0$ for any i, which means $\{\overline{x^i}\}_{i=0}^{n-1}$ consists of k-linearly independent elements.

To find $C \in M_n(k)$ in a way that $k[x]/\langle f(x) \rangle$ becomes isomorphic to V_C as a k[x]-module, we have to focus on the k-linear map of multiplying by x:

$$k[x]/\langle f(x)\rangle \xrightarrow{\times x} k[x]/\langle f(x)\rangle;$$

(recall that in V_C multiplication by x is given by C). We will write down the matrix representation of ×x in the basis $\{\overline{x^i}\}_{i=0}^{n-1}$: to find the i-th column we have to multiply $\overline{x^i}$ by x and then write it as a linear combination of elements of $\{\overline{x^i}\}_{i=0}^{n-1}$. So for $0 \le i < n-1$, we simply have $x \cdot \overline{x^i} = \overline{x^{i+1}}$, and for the last column we have

$$x \cdot \overline{x^{n-1}} = \overline{x^n} = -c_0 - c_1 \overline{x} - \dots - c_{n-1} \overline{x^{n-1}}$$

where $f(x) = x^n + c_{n-1}x^{n-1} + \dots + c_0$. Hence the associated matrix

is

$$\mathbf{c}(\mathbf{f}) \coloneqq \begin{pmatrix} 0 & 0 & \cdots & 0 & -\mathbf{c}_0 \\ 1 & 0 & \cdots & 0 & -\mathbf{c}_1 \\ 0 & 1 & \cdots & 0 & -\mathbf{c}_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & -\mathbf{c}_{n-1} \end{pmatrix}.$$

c(f) is called the companion matrix of f. Overall we proved:

Proposition 6 Suppose $f(x) \in k[x]$ is a monic positive degree polynomial. Then

$$k[x]/\langle f(x) \rangle \simeq V_{c(f)}$$

as k[x]-module.

Theorem 7 (Rational canonical form) Suppose k is a field and $A \in M_n(k)$. Then there are unique monic positive degree polynomials $f_1|f_2|\cdots|f_m \in k[x]$ such that A is similar to

$$\begin{pmatrix} \mathbf{c}(\mathbf{f}_1) & 0 & \cdots & 0 \\ 0 & \mathbf{c}(\mathbf{f}_2) & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \mathbf{c}(\mathbf{f}_m) \end{pmatrix}$$

Proof. (Existence) By Proposition 4 there are unique monic positive degree polynomials $f_1|f_2|\cdots|f_m \in k[x]$ such that

$$\begin{split} V_{A} \simeq & k[x]/\langle f_{1}(x) \rangle \oplus \cdots \oplus k[x]/\langle f_{m}(x) \rangle \\ \simeq & V_{c(f_{1})} \oplus \cdots \oplus V_{c(f_{m})} \qquad \text{(by Proposition 6)} \\ \simeq & V_{\text{diag}(c(f_{1}),...,c(f_{m}))}; \end{split}$$

and so, by Lemma 3, A and $diag(c(f_1), \ldots, c(f_m))$ are similar which gives us the existence part.

(Uniqueness) Suppose A is similar to $\operatorname{diag}(c(f_1), \ldots, c(f_m))$ and $\operatorname{diag}(c(f'_1), \ldots, c(f'_{m'}))$ for some monic positive degree polynomials $f_1|f_2|\cdots|f_m$ and $f'_1|f'_2|\cdots|f'_{m'}$. So by Lemma 3

$$V_{\operatorname{diag}(c(f_1),\ldots,c(f_m))} \simeq V_{\operatorname{diag}(c(f'_1),\ldots,c(f'_{m'}))};$$

therefore

$$V_{c(f_1)} \oplus \cdots \oplus V_{c(f_m)} \simeq V_{c(f_1')} \oplus \cdots \oplus V_{c(f_{m'}')}$$

Hence by Proposition 6

$$k[x]/\langle f_1(x)\rangle \oplus \cdots \oplus k[x]/\langle f_m(x)\rangle \simeq k[x]/\langle f'_1(x)\rangle \oplus \cdots \oplus k[x]/\langle f'_{m'}(x)\rangle,$$

as k[x]-modules. Therefore by the uniqueness part of Theorem 1 claim follows. ■

The word <u>rational</u> refers to the fact that this form works for an arbitrary field.

The monic polynomials f_1, \ldots, f_m in Theorem 7 (Rational Canonical Form) are called invariant factors of A. Notice that if f_i 's are invariant factors of A, then

$$V_A \simeq k[x]/\langle f_1(x) \rangle \oplus \cdots \oplus k[x]/\langle f_m(x) \rangle$$

Let's recall that the characteristic polynomial $f_A(x)$ of A is

$$f_A(x) \coloneqq \det(xI - A).$$

A monic polynomial $m_A(x)$ is called the minimal polynomial of A if $m_A(A) = 0$ and p(A) = 0 for $p(x) \in k[x]$ implies that $m_A(x)|p(x)$; alternatively $m_A(x)$ is a monic polynomial such that

$$\langle \mathfrak{m}_{A}(\mathbf{x})\rangle = \{\mathfrak{p}(\mathbf{x}) \in k[\mathbf{x}] | \mathfrak{p}(A) = 0\}.$$

Note that one can easily check that the RHS of the above equality is an ideal of k[x]; and so there is such $m_A(x)$. We will show the existence by proving that f_m (the last invariant factor) satisfies these properties. Convince yourself that if there is a minimal polynomial it is unique.

Theorem 8 (Invariant factors and minimal polynomial) Suppose $f_1|f_2|\cdots|f_m$ are invariant factors of A. Then f_m is the minimal polynomial of A.

Proof. We know that

$$V_A \simeq k[x]/\langle f_1(x) \rangle \oplus \cdots \oplus k[x]/\langle f_m(x) \rangle,$$

as k[x]-module. Since $f_i(x)|f_m(x)$, $f_m(x)$ times the RHS is zero. Hence $f_m(x) \cdot V_A = 0$, which means $f_m(A)k^n = 0$. Therefore $f_{\mathfrak{m}}(\mathbf{A}) = 0.$

Suppose p(A) = 0. Then for any $v \in k^n$ we have p(A)v = 0; and so $p(x) \cdot v = 0$. Therefore p(x) times the RHS is zero; in in V_A

particular

$$\mathbf{p}(\mathbf{x})\left(\mathbf{k}[\mathbf{x}]/\langle \mathbf{f}_{\mathfrak{m}}(\mathbf{x})\rangle\right)=0.$$

This implies that $f_m(x)|p(x)$. And claim follows.

Next we prove a stronger result which implies Cayley-Hamilton Theorem.

Theorem 9 (Cayley-Hamilton Theorem) $f_A(A) = 0$ where f_A is the characteristic polynomial of A.

To prove Cayley-Hamilton Theorem it is enough to show that $m_A(x)|f_A(x)$. So Cayley-Hamilton Theorem is a corollary of the next theorem.

Theorem 10 Suppose $f_1|f_2|\cdots|f_m$ are invariant factors of A. Then $m_A(x) = f_m(x)$ and $f_A(x) = f_1(x)f_2(x)\cdots f_m(x)$; in particular, $m_A(x)|f_A(x)$ and any irreducible factor of $f_A(x)$ is an irreducible factor of $m_A(x)$.

Proof. By Rational Canonical Form theorem, there is g in $GL_n(k)$ such that

$$g^{-1}Ag = diag(c(f_1), \dots, c(f_m)).$$

Hence

$$g^{-1}(xI - A)g = xI - g^{-1}Ag = diag(xI - c(f_1), \dots, xI - c(f_m)).$$

Therefore

$$f_A(x) = \det(xI - A) = \prod_{i=1}^m \det(xI - c(f_i)) = \prod_{i=1}^m f_{c(f_i)}(x).$$

In the next Lemma we will prove that $f_{c(f)}(x) = f(x)$ for a monic positive degree polynomial; for now we will assume this and

continue the proof. And so we have

$$f_A(x) = f_1(x)f_2(x)\cdots f_m(x).$$

By Theorem 8 we know that $m_A(x) = f_m(x)$; and so $m_A(x)|f_A(x)$.

Now suppose p(x) is an irreducible factor of $f_A(x)$; then p(x) divides $\prod_{i=1}^{m} f_i(x)$. Since p(x) is prime (k[x] is a PID), p(x) divides $f_i(x)$ for some i. As $f_i(x)|f_m(x)$ for any i, p(x)divides $f_m(x) = m_A(x)$; and claim follows.

In the next lecture we will prove $f_{c(f)} = f(x)$ and the Jordan Canonical Form; and then we get to the more general theory of modules.