Math200b, lecture 7

Golsefidy

Finitely generated modules over a PID

In the previous lecture we proved the fundamental theorem
of finitely generated modules over a PID; here is the extended

version of it which we proved.

Theorem 1 Suppose D is a PID and M is a finitely generated D-
module. Then there are di|ds|---|dy in D \ {0} such that
m
M= D" e @ D/(dy);
i=1
and n and the proper non-zero principal ideals (di)’s are unique

with these properties. Moreover rank(M) = n, under the above
isomorphism we have Tor(M) ~ @, D/diD, and Ym € Max(D)
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and non-negative integer k
m<M,,,
mk+1 Mm

Note: in class we used irreducible elements to describe (1);

dimojn {ilvan(ds) > ] 1)

since in a PID a non-zero maximal ideal is generated by an
irreducible element and vice versa an irreducible element gen-
erates a maximal non-zero ideal, these approaches are essen-
tially the same.

We continue with two immediate corollaries of this result.
Let’s recall that when D is an integral domain and M is a

D-module
Tor(M):={meM|3de D~ {0},dm =0}

is a submodule of M. A D-module is called torsion free if
dm = 0 implies either d = 0 or m = 0. It is clear that a D-
module is torsion free if and only if Tor(M) = 0. And a free
D-module is torsion free. As a corollary of the fundamental
theorem of finitely generated modules over a PID we get the

converse.

Corollary 2 Suppose D is a PID and M is a finitely generated
D-module. Then M is a free module if and only if M is torsion free.
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Proof. (=) is clear. To show (<), we notice that by Funda-
mental Theorem of finitely generated of modules over a PID,
M =~D"e @ D/(di) (for some d; € D \ ({0} uD*)) and under
this isomorphism Tor(M) =~ @i, D/d;D. Since M is torsion
free, Tor(M) = 0; so M ~ D™; and claim follows. m
Note. In the above corollary it is crucial that M is finitely
generated. For instance Q is a torsion free Z-module; but it is
not a free Z-module. Let’s see why Q is not a free Z-module.
Method 1. Any two elements of Q are Z-linearly depen-
dent; and so rank(Q) = 1. Hence if Q is a free Z-module, then

it should be isomorphic to Z; that means it should be a cyclic
abelian group which is a contradiction. (Why?)

Method 2. Let 0 : Q - & Z be a Z-module homomor-
phism. Then, for any n € Z \ {0} and a € Q, nx = 6(a) has
a solution in @i Z (let x := 8(a/n)); this implies that all the

coordinates of 6(a) are multiples of n for any non-zero integer
n. Hence 8(a) = 0. So Homz(Q, @i Z) = 0; in particular Q is
not a free Z-module. (In class we used the above argument
only for n = 2 and deduced that 06 cannot be surjective; as you

can see here the same idea gives us much more. And as it was



mentioned during lecture the same statement holds for the so

called divisible groups (these are groups were nx = a has a

solution for any non-zero integer n and a € G.))
Minimum number of generators. How can we find the
minimum number d(M) of generators of a finitely generated

D-module M when D is a PID? Suppose
m

M=D"o P D/{di)
i=1

for d;|ds|---|dm € D N\ ({0} u D*). Suppose p is an irreducible
factor of d;. As d;|d;, p|d; for any i. Therefore
m
pM =~ (pD)" e @B(pD/diD);
i=1

and so

= (55) @ Goramy=(5)

Since D/pD is a field, by linear algebra we know that

d(M/pM) =dimpp M/pM =m+n.

as a D/pD-module

Since the scalar multiplication of M/pM as a D/pD-module is

the same as the scalar multiplication of M/PM as a D-module,
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we have that the minimum numbers of generators of M/pM
as a D-module and as a D/pD-module are the same.

We also notice that, if X generates a module M, then the
image of X under the quotient map M — M/N, for any sub-
module N, generates M/N; and so d(M) > d(M/N) for any

submodule N. Hence
d(M) > d(M/pM) =m+n.

Conversely {e;}™™ generates (pD)" ® @, (pD/d;D) as a D-
module where e; has 1 in its i-th coordinate and 0 in the rest
(here 1 refers either to the identity of D or the identity of
D/d;D for some j); and so d(M) < m +n. So overall we get for

dy|dg|-|dm e DN ({0} uD*) and M = D" e @, D/(d;), we have

rank(M) =n, and d(M) =m +n;

in particular, d(M) = rank(M) if and only if M is a free D-
module. In your HW assignment you will prove that the same
statement holds for an arbitrary unital commutative ring D.

Rational canonical form. Suppose k is a field and A ¢

M (k). As we discussed earlier in the course, we can view k"



as a k[x]-module by defining x-v := Av; more explicitly for any

polynomial f(x) := ¥{7; aix* and v € k™ we have
f(x)-vi=> aAlv.
i=0

In order to remember that the above k[x]-module structure of
k™ depends on A we denote it by Va. The first question that
we address is how much the module structure of V depends

on A.

Lemma 3 V, ~ Vg if and only if A and B are similar; that means
ig € GLn (k) such that A = g~'Bg.

Proof. (=) Suppose 0 : Vo - Vpisak|[x]-module isomorphism.
Then for any v € k™ we have
0(x-v) =x-08(v);

—
in VB

in VA
and so 8(Av) = BO(v). Suppose g € M, (k) is the matrix repre-
sentation of 0 in the standard basis; that means for any v € k™
(in a column form) we have 0(v) = gv. Since 0 is a bijection,

g € GLn (k). Therefore we have that for any v € k™
gAv = 0(Av) = BO(v) = Bgv, which implies A = g"'Bg.
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(<) Let 0 : k™ —» k™, 0(v) := gv. Then for any v € V4 and

f(x) = 355, cixt € k[x] we have

O(f(x)-v) =g (i ciAi)v =g (i ci(g‘lBg)i)v

— =0 =0
in VA

=g (Z cingig)v = (Z CiBi) gv
i=0 i=0 e
0(v)

=f(x)-8(v);

—_———

in VB
and so 0 : V4 — V3 is a k[x]-module isomorphism. m

Next we notice that rank(Va) = 0 as a k[x]-module; and so:

Proposition 4 There are unique monic positive degree polynomials
f1|fo|--+[fm € k[x] such that

Va = k[x]/(fi(x)) & - @ k[x]/{fm(x))

as kK[x]-modules.

Proof. If rank(Va) # 0, then k[x] can be embedded into Va
(as a k[x]-module); this implies that dimy Vo = oo, which is a

contradiction. Since dimy VA =n < oo, Vj is a finitely generated
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k[x]-module. Since k[x] is a PID, by Theorem 1 and having
rank(Va) = 0 we deduce that there are polynomials f|fa|--|fm €
k[x] N~ ({0} uk[x]*) such that

Va = K[x]/{fi(x)) & - @ k[x]/(fm(x))
as k[x]-module. As k[x]* = k¥, we have that degf; > 1; and
after multiplying f;’s by some units we can assume that f;’s are
monic. And uniqueness follows from the uniqueness part of
Theorem 1 and the fact that two different monic polynomials
cannot generate the same principal ideal. u

Next we would like to see if k[x]/(f(x)) is isomorphic to V( for
some C € M, (k).

Lemma 5 Suppose f(x) € k[x]and degf=n>0. Then {1,... x"!}
is a k-basis of k[x]/(f(x)), where Xt = xt+ (f(x)); in particular
dimy k[x]/(f(x)) = deg f.

Proof. This is an immediate corollary of long division: for
a(x) € k[x], let q(x) and r(x) be the quotient and remainder of
a(x) divided by f(x), respectively. So a(x) = f(x)q(x) + r(x)
and 7(x) = X' cixi; thus

a(x) + (f(x)) = 1(x) + (f(x)) = ngg cixt.
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This implies that the k-span of {x! s k[x]/(f(x)).

If Y eixt = 0, then Y1 eixt e (f(x)). Since the only mul-
tiple of f(x) that has degree less than degree of f(x) is zero,
we get that 31" ¢;x¥; this implies that ¢; = 0 for any i, which
means {;}{‘:‘01 consists of k-linearly independent elements. =

To find C € My (k) in a way that k[x]/(f(x)) becomes iso-
morphic to V¢ as a k[x]-module, we have to focus on the k-

linear map of multiplying by x:

k[x]/(f(x)) = K[x]/(f(x)):

(recall that in V¢ multiplication by x is given by C). We will
write down the matrix representation of xx in the basis {;}’3:‘01:
to find the i-th column we have to multiply xi by x and then

write it as a linear combination of elements of {x'}!".!. So for

0 <1i<n-1, wesimply have x-x! = xi*1, and for the last column

we have

X - Xn_1 = X_n =—Cp— Cli — e — cn_lx“‘l

where f(x) = x™+cn_1 X" 1 +---+co. Hence the associated matrix



is

(00 0 —cp )
10 -0 -c
c(f)=]01 - 0 -c

00 1 —cny

c(f) is called the companion matrix of f. Overall we proved:

Proposition 6 Suppose f(x) € k[x] is a monic positive degree poly-
nomial. Then

K[x]/{f(x)) = Ve

as k[x|-module.

Theorem 7 (Rational canonical form) Suppose k is a field and
A € My (k). Then there are unigue monic positive degree polynomi-
als f1|fo|---|fm € K[x] such that A is similar to

(c(f)) 0 - 0 )
0 c(fy) - 0
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Proof. (Existence) By Proposition 4 there are unique monic

positive degree polynomials f;|fy|---|fm, € k[x] such that

Va =k[x]/{f1(x)) & - @ k[x]/{fm(x))
~“Veir) @ ® Verr,) (by Proposition 6)

and so, by Lemma 3, A and diag(c(f;),...,c(fin)) are similar
which gives us the existence part.

(Uniqueness) Suppose A is similar to diag(c(f1),...,c(fm))
and diag(c(f}),...,c(f!,))for some monic positive degree poly-

nomials fi|f|---|f;, and f}|f}|--|f .. So by Lemma 3

therefore
Ver) @@ Vet = Vo) @@ Ve ).
Hence by Proposition 6

K[x]/{fi(x))@---@k[x]/{fm(x)) = K[x]/{fi(x))@---@K[x]/{f}, (X)),

as k[x]-modules. Therefore by the uniqueness part of Theo-

rem 1 claim follows. u
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The word rational refers to the fact that this form works for
an arbitrary field.

The monic polynomials fy,..., f, in Theorem 7 (Rational
Canonical Form) are called invariant factors of A. Notice that

if f;’s are invariant factors of A, then
Va = K[x]/(f1(x)) @ - @ K[x]/{fm(x)).
Let’s recall that the characteristic polynomial fa(x) of A is
fa(x) :=det(xI-A).

A monic polynomial ma(x) is called the minimal polynomial
of A if ma(A) =0 and p(A) = 0 for p(x) € k[x] implies that
ma(x)[p(x); alternatively ma(x) is a monic polynomial such
that
(ma(x)) = {p(x) e k[x]|p(A) = 0}.

Note that one can easily check that the RHS of the above equal-
ity is an ideal of k[x]; and so there is such ma (x). We will show
the existence by proving that fy, (the last invariant factor) sat-

isfies these properties. Convince yourself that if there is a

minimal polynomial it is unique.
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Theorem 8 (Invariant factors and minimal polynomial) Suppose
f1|fa|--|fm are invariant factors of A. Then fy, is the minimal poly-

nomial of A.

Proof. We know that

Va = k[x]/(fi(x)) & - @ k[x]/{fm(x)),

as k[x]-module. Since fi(x)|fm(x), fm(x) times the RHS is zero.
Hence f;,,(x) - Va = 0, which means f;,(A)k"™ = 0. Therefore
fm(A) =0.

Suppose p(A) = 0. Then for any v € k™ we have p(A)v = 0;

and so p(x)-v = 0. Therefore p(x)times the RHS is zero; in

—
in VA
particular
p(x) (k[x]/(fm(x))) = 0.
This implies that fi, (x)[p(x). And claim follows. |

Next we prove a stronger result which implies Cayley-

Hamilton Theorem.

Theorem 9 (Cayley-Hamilton Theorem) fa(A) = 0where fa is

the characteristic polynomial of A.
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To prove Cayley-Hamilton Theorem it is enough to show that
ma(x)|fa(x). So Cayley-Hamilton Theorem is a corollary of

the next theorem.

Theorem 10 Suppose fi|fs---|fm are invariant factors of A. Then
ma(x) = f(x) and fa(x) = f1(x)f2(x)---fi(x), in particular,
ma (x)|fa(x) and any irreducible factor of fao(x) is an irreducible

factor of ma(x).

Proof. By Rational Canonical Form theorem, there is g in
GLn (k) such that

g 'Ag =diag(c(f1), - c(fm)).
Hence
g ' (xI-A)g=xI-g'Ag=diag(xI-c(f), -, xI-c(fm)).
Therefore

m m

fA(X) = det(XI — A) = H det(xI — C(fi)) = H fc(fi) (X)
i=1 =1

In the next Lemma we will prove that f+)(x) = f(x) fora monic

positive degree polynomial; for now we will assume this and
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continue the proof. And so we have

fa(x) = f1(x)fa(x) - fm(x).

By Theorem 8 we know that ma (x) = fi(x); and so ma (x)[fa(x).
Now suppose p(x) is an irreducible factor of fa(x); then
p(x) divides [Ii%, fi(x). Since p(x) is prime (k[x] is a PID),
p(x) divides fi(x) for some i. As fi(x)|[fm(x) for any 1, p(x)
divides f,(x) = ma(x); and claim follows. m
In the next lecture we will prove f. (s = f(x) and the Jordan
Canonical Form; and then we get to the more general theory

of modules.
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