Math200b, homework 7

Golsefidy

March 2019

Algebraic closure of a finite field.

Suppose $\overline{\mathbb{F}}_p$ is an algebraic closure of \mathbb{F}_p . Let $\sigma: \overline{\mathbb{F}}_p \to \overline{\mathbb{F}}_p$, be the Frobenius map; that means $\sigma(\alpha) := \alpha^p$.

- 1. Prove that $\sigma \in \operatorname{Aut}(\overline{\mathbb{F}}_{\mathfrak{p}}/\mathbb{F}_{\mathfrak{p}})$.
- 2. Prove that $\{\alpha \in \overline{\mathbb{F}}_p | \sigma^n(\alpha) = \alpha\} \simeq \mathbb{F}_{p^n}$. (We will identify \mathbb{F}_{p^n} with this set of fixed points of σ^n .)
- 3. Prove that $\operatorname{Aut}(\mathbb{F}_{p^n}/\mathbb{F}_p) = \langle r_{\mathbb{F}_{p^n}}(\sigma) \rangle$ where $r_{\mathbb{F}_{p^n}} : \operatorname{Aut}(\overline{\mathbb{F}}_p/\mathbb{F}_p) \to \operatorname{Aut}(\mathbb{F}_{p^n}/\mathbb{F}_p)$ is the the restriction homomorphism. (Hint.

Show that \mathbb{F}_{p^n} is a splitting field of a separable polynomial; and deduce that $|\operatorname{Aut}(\mathbb{F}_{p^n}/\mathbb{F}_p)| = n$.)

4. Prove that $\operatorname{Aut}(\overline{\mathbb{F}}_p/\mathbb{F}_p) \simeq \widehat{\mathbb{Z}}$ where

$$\widehat{\mathbb{Z}}:=\{\{\alpha_n+n\mathbb{Z}\}_n\in \prod_{n=2}^{\infty}\mathbb{Z}/n\mathbb{Z}|\ m|n\ implies\ m|\alpha_n-\alpha_m\}.$$

- 5. Prove that $\widehat{\mathbb{Z}}$ is torsion free. (**Hint.** Suppose $k\{a_n + n\mathbb{Z}\}_n = 0$. This implies that $n|ka_n$ for any $n \in \mathbb{Z}^+$. Deduce that $n|a_{nk}$ for any n. Since $n|a_{nk} a_n$, deduce that $n|a_n$; and so $a_n + n\mathbb{Z} = 0$ for any n.)
- 6. Suppose $\overline{\mathbb{F}}_p/E$ is a finite field extension. Prove that $E = \overline{\mathbb{F}}_p$. (**Hint.** Prove that $\overline{\mathbb{F}}_p$ is a splitting field of a separable polynomial over E. Deduce that $|\operatorname{Aut}(\overline{\mathbb{F}}_p/E)| = [\overline{\mathbb{F}}_p : E]$.)

Splitting fields.

- 1. Suppose F is a field of and $x^n 1$ has n distinct zeros in F. Suppose $a \in F^{\times}$.
 - (a) Prove that $F[\sqrt[3]{\alpha}]$ is a splitting field of a separable polynomial.

- (b) Prove that $\{\alpha \in F | \alpha^n = 1\}$ is a cyclic group of order n. (**Hint.** Use problem 4, HW 4, math200a.)
- (c) Prove that $\operatorname{Aut}(F[\sqrt[n]{a}]/F)$ can be embedded into $\mathbb{Z}/n\mathbb{Z}$. (**Hint.** Show that $\sigma(\sqrt[n]{a})/\sqrt[n]{a}$ is a zero of $x^n 1$.)
- 2. Suppose F is a field of characteristic zero and E is a splitting field of $x^n 1$ over F. Prove that $\operatorname{Aut}(E/F)$ can be embedded into $(\mathbb{Z}/n\mathbb{Z})^{\times}$. (**Hint.** Suppose $\{\alpha \in E | \alpha^n = 1\} = \langle \zeta \rangle$ (using 1(b)). Show that $E = F[\zeta]$ and prove that for any $\sigma \in \operatorname{Aut}(E/F)$ there is $i_{\sigma} \in (\mathbb{Z}/n\mathbb{Z})^{\times}$ such that $\sigma(\zeta) = \zeta^{i_{\sigma}}$.)
- 3. Suppose F is a field of characteristic zero,

$$F =: F_0 \subseteq F_1 \subseteq F_2 \subseteq \cdots \subseteq F_n$$

is a chain of fields such that F_1 is a splitting field of $x^m - 1$ over F and, for any $i \geq 2$, $F_i = F_{i-1}[\sqrt[m]{\alpha_i}]$ for some $\alpha_i \in F_{i-1}^{\times}$ and $m_i|m$. Prove that F_n is a splitting field of a separable polynomial over F and $\operatorname{Aut}(F_n/F)$ is a solvable group. (Hint. Prove that $\operatorname{Aut}(F_i/F_{i-1})$ is abelian, and consider

$$1 \subseteq \operatorname{Aut}(\mathsf{F}_{\mathsf{n}}/\mathsf{F}_{\mathsf{n}-1}) \subseteq \operatorname{Aut}(\mathsf{F}_{\mathsf{n}}/\mathsf{F}_{\mathsf{n}-2}) \subseteq \cdots \subseteq \operatorname{Aut}(\mathsf{F}_{\mathsf{n}}/\mathsf{F}_{\mathsf{0}}).)$$

- 4. Suppose p is prime and $E \subseteq \mathbb{C}$ is a splitting field of $x^p 2$ over \mathbb{Q} . Prove that $\operatorname{Aut}(E/\mathbb{Q}) \simeq \mathbb{Z}/p\mathbb{Z}_{\varphi} \rtimes (\mathbb{Z}/p\mathbb{Z})^{\times}$ where $\varphi : (\mathbb{Z}/p\mathbb{Z})^{\times} \to \operatorname{Aut}(\mathbb{Z}/p\mathbb{Z}), \ (\varphi(\mathfrak{a}))(\mathfrak{b}) := \mathfrak{ab}.$ (Hint. In the previous HW assignment you have showed that $E = \mathbb{Q}[\zeta_p, \sqrt[q]{2}]$ and $[E : \mathbb{Q}] = p(p-1)$. Argue why $|\operatorname{Aut}(E/\mathbb{Q})| = p(p-1)$. For $\sigma \in \operatorname{Aut}(E/\mathbb{Q})$ investigate what the possibilities of $(\sigma(\zeta_p), \sigma(\sqrt[q]{2}))$ are.)
- 5. Suppose $f(x) \in \mathbb{Q}[x]$ is irreducible, $\deg f = p$ is prime, f has p 2 real and 2 non-real zeros in \mathbb{C} . Let $E \subseteq \mathbb{C}$ be a splitting field of f(x) over \mathbb{Q} . Prove that $\operatorname{Aut}(E/\mathbb{Q}) \simeq S_p$. (Hint. Since E/\mathbb{Q} is a normal extension, restriction of complex conjugation gives us an element of $\operatorname{Aut}(E/\mathbb{Q})$. Let $\alpha \in E$ be a zero of f(x); then $p = [\mathbb{Q}[\alpha] : \mathbb{Q}]|[E : \mathbb{Q}]$. Argue why $[E : \mathbb{Q}] = |\operatorname{Aut}(E/\mathbb{Q})|$. Let $X \subseteq E$ be the set of zeros of f(x). Argue why restriction to X gives us an embedding of $\operatorname{Aut}(E/\mathbb{Q})$ into the symmetric group S_X of X which is isomorphic to S_p . Get a subgroup of S_p that contains a transposition and a cycle of length p. Use

problem 7(b), HW 4, math200a.)

- 6. Suppose F is a field, $f(x) \in F[x]$ is irreducible, and E is a splitting field of f(x) over F. Suppose there is $\alpha \in E$ such that $f(\alpha) = f(\alpha + 1)$. Prove that
 - (a) Characteristic of F is a prime number p.
 - (b) Show that Aut(E/F) has a subgroup of order p.