Math200b, homework 6

Golsefidy

March 2019

Finite fields.

1. (a) Suppose p is a prime. Prove that $\mathbb{F}_{p^{m}}$ can be embedded into $\mathbb{F}_{p^{n}}$ if and only if $m \mid n$. (Hint. $\quad(\Rightarrow)$ consider $\mathbb{F}_{\mathfrak{p}^{n}}$ as a vector space over $\mathbb{F}_{\mathfrak{p}^{m}}$. (\Leftarrow) show that $\left.x^{p^{m}}-x \mid x^{p^{n}}-x.\right)$
(b) Suppose $f(x) \in \mathbb{F}_{p}[x]$ is a monic irreducible polynomial of degree d. Prove that $f(x) \mid x^{p^{d}}-x$. (Hint. There is a field extension E / \mathbb{F}_{p} and $\alpha \in E$ such that $E=\mathbb{F}_{p}[\alpha]$ and $\left.f(\alpha)=0.\right)$
(c) Suppose $f(x) \in \mathbb{F}_{p}[x]$ is irreducible and $f(x) \mid x^{p^{n}}-x$.

Prove that $\operatorname{deg} \mathrm{f} \mid \mathrm{n}$. (Hint. Argue that there is $\alpha \in \mathbb{F}_{p^{n}}$ such that $f(\alpha)=0$; consider $\mathbb{F}_{p}[\alpha] \subseteq \mathbb{F}_{p^{n}}$ and use part (a).)
(d) Let $P_{d}:=\left\{f(x) \in \mathbb{F}_{p}[x] \mid \operatorname{deg} f=d, f\right.$ is monic irreducible $\}$. Prove that

$$
\prod_{d \mid n} \prod_{f(x) \in P_{d}} f(x)=x^{p^{n}}-x .
$$

Deduce that $p^{n}=\sum_{d \mid n} d\left|P_{d}\right|$. (Hint. $x^{p^{n}}-x$ is squarefree.)

Remark. Using Möbius inversion, we can get a closed formula for the number of irreducible monic polynomials of degree n over \mathbb{F}_{p},

$$
\left|P_{n}\right|=\frac{1}{n} \sum_{d \mid n} \mu(n / d) p^{d}
$$

In particular, we can deduce that $\left|P_{n}\right|>0$ (why?).
2. Suppose p is prime and $a \in \mathbb{F}_{p}^{\times}$. Prove that $x^{p}-x+a$ is irreducible in $\mathbb{F}_{p}[x]$. (Hint. Suppose E is a splitting field of $x^{p}-x+a$ over \mathbb{F}_{p}, and $\alpha \in E$ is a zero of $f(x):=$ $x^{p}-x+a$. Prove that $\alpha+i$ is a zero of $f(x)$ for any
$i \in \mathbb{F}_{p}$, and deduce that $f(x)=\prod_{i \in \mathbb{F}_{p}}(x-\alpha-i)$. Suppose $\operatorname{deg} \mathfrak{m}_{\alpha, \mathbb{F}_{p}}=d$; consider the coefficient of x^{d-1} of $\boldsymbol{m}_{\alpha, \mathbb{F}_{p}}(x)$ to deduce $d=p$.)
3. Suppose $p_{1}(x), \ldots, p_{n}(x)$ are irreducible in $\mathbb{F}_{p}[x]$. Suppose E is a splitting field of $\prod_{i=1}^{n} p_{i}(x)$ over \mathbb{F}_{p}. Prove that

$$
\left[E: \mathbb{F}_{\mathfrak{p}}\right]=\operatorname{lcm} m_{\mathfrak{i}=1}^{\mathfrak{n}} \operatorname{deg} \mathfrak{p}_{\mathfrak{i}} .
$$

(Hint. Let $\mathfrak{m}:=\operatorname{lcm} m_{\mathfrak{i}=1}^{n} \operatorname{deg} \mathfrak{p}_{\mathfrak{i}}$. Then $\mathfrak{p}_{\mathfrak{i}}(x) \mid x^{p^{m}}-x$; deduce that $\mathbb{F}_{p^{m}}$ contains a splitting field of $\prod_{i=1}^{n} p_{i}(x)$. On the other hand, argue that $\operatorname{deg} \mathfrak{p}_{i} \mid\left[E: \mathbb{F}_{p}\right]$ for any $\left.i.\right)$
4. Suppose $m, n \in \mathbb{Z}^{+}, d:=\operatorname{gcd}(m, n)$, and $l:=\operatorname{lcm}(m, n)$. Identify $\mathbb{F}_{p^{m}}$ and $\mathbb{F}_{p^{n}}$ with certain subfields of $\mathbb{F}_{p^{p}}$; this can be done because of problem 1 (a).
(a) Show that $\mathbb{F}_{p^{d}}$ can be identified with $\mathbb{F}_{p^{m}} \cap \mathbb{F}_{p^{n}}$.
(b) Prove that $\mathbb{F}_{p^{d}} \otimes_{F_{p}} \mathbb{F}_{p^{d}} \simeq \bigoplus_{i=1}^{d} \mathbb{F}_{p^{d}}$ as $\mathbb{F}_{p^{2}}$-algebras. (Hint. Suppose $f(x) \in \mathbb{F}_{p}[x]$ is a monic irreducible polynomial of degree d. Prove that $\mathbb{F}_{p^{d}}$ is a splitting field of $f(x)$ over \mathbb{F}_{p} and $\mathbb{F}_{p^{d}} \simeq \mathbb{F}_{p}[x] /\langle f(x)\rangle$.)
(c) Prove that $\mathbb{F}_{\mathfrak{p}^{m}} \otimes_{{\underset{p}{ }}^{d}} \mathbb{F}_{p^{n}} \simeq \mathbb{F}_{p^{l}}$ as $\mathbb{F}_{p^{d}}$-algebras. (Hint. Show that $\theta: \mathbb{F}_{p^{m}} \otimes_{\mathfrak{F}_{p^{d}}} \mathbb{F}_{p^{n}} \rightarrow \mathbb{F}_{p^{l}}, \theta(\mathrm{a} \otimes \mathrm{b})=\mathrm{ab}$ gives us a well-defined $\mathbb{F}_{p^{d} \text {-algebra }}$ homomorphism. Show that $\operatorname{Im}(\theta)$ is a field that has copies of $\mathbb{F}_{p^{m}}$ and $\mathbb{F}_{p^{n}}$ as subfields. Deduce that θ is onto. Compare the dimension of both sides as $\mathbb{F}_{p^{d}}$-vector spaces to deduce that θ is injective.)
(d) Prove that $\mathbb{F}_{p^{n}} \otimes_{\mathbb{F}_{\mathfrak{p}}} \mathbb{F}_{p^{m}} \simeq \bigoplus_{i=1}^{\mathrm{d}} \mathbb{F}_{p^{\imath}}$ as $\mathbb{F}_{p^{\prime}}$-algebras. (Hint. $\left.\mathbb{F}_{p^{n}} \otimes_{\mathbb{F}_{\mathfrak{p}}} \mathbb{F}_{\mathfrak{p}^{m}} \simeq \mathbb{F}_{\mathfrak{p}^{n}} \otimes_{\mathbb{F}_{p^{d}}} \mathbb{F}_{\mathfrak{p}^{d}} \otimes_{\mathbb{F}_{\mathfrak{p}}} \mathbb{F}_{\mathfrak{p}^{d}} \otimes_{\mathbb{F}_{\mathfrak{p}^{d}}} \mathbb{F}_{\mathfrak{p}^{m} .}.\right)$

Splitting fields.

1. Suppose F is a field, $f(x) \in F[x] \backslash F$, and E is a splitting field of $f(x)$ over E.
(a) Prove that, if $\operatorname{gcd}\left(f, f^{\prime}\right) \neq 1$, then $F[x] /\langle f(x)\rangle \otimes_{F} E$ has a non-zero nilpotent element.
(b) Prove that, if $\operatorname{gcd}\left(f, f^{\prime}\right)=1$, then

$$
\mathrm{F}[\mathrm{x}] /\langle\mathrm{f}(\mathrm{x})\rangle \otimes_{\mathrm{F}} \mathrm{E} \simeq \underbrace{\mathrm{E} \oplus \cdots \oplus \mathrm{E}}_{\text {deg f-times }} ;
$$

in particular it has no non-zero nilpotent elements.
2. Suppose $E \subseteq \mathbb{C}$ is a splitting field of $x^{p}-2$ over \mathbb{Q} where p is a prime.
(a) Prove that $E=\mathbb{Q}\left[\zeta_{p}, \sqrt[p]{2}\right]$ where $\zeta_{p}=e^{\frac{2 \pi i}{p}}$.
(b) Prove that $[E: \mathbb{Q}]=p(p-1)$. (Hint. Show that $[\mathbb{Q}[\sqrt[p]{2}]: \mathbb{Q}]=p$ and $\left[\mathbb{Q}\left[\zeta_{p}\right]: \mathbb{Q}\right]=p-1$ and use $\operatorname{gcd}(p, p-1)=1$ to deduce $p(p-1) \mid[E: \mathbb{Q}]$. Use $[E: \mathbb{Q}]=\left[E: \mathbb{Q}\left[\zeta_{p}\right]\right]\left[\mathbb{Q}\left[\zeta_{p}\right]: \mathbb{Q}\right]$ to deduce $[E: \mathbb{Q}] \leq$ $p(p-1)$.)

Tower of fields.

1. Suppose $a_{i} \in \mathbb{Q}^{\times}$. Prove that $\sqrt[3]{2} \notin \mathbb{Q}\left[\sqrt{a_{1}}, \ldots, \sqrt{a_{n}}\right]$.
2. Suppose F is a field and its characteristic is not 2. Let $a, b \in F^{\times} \backslash F^{\times 2}$. Prove that

$$
[F[\sqrt{a}, \sqrt{b}]: F]=4 \Leftrightarrow a b \notin \mathrm{~F}^{\times^{2}}
$$

3. Suppose F is a field and $[F[\alpha]: F]$ is odd. Prove that $F[\alpha]=F\left[\alpha^{2}\right]$.
