Math200b, homework 6

Golsefidy

March 2019

Finite fields.

- 1. (a) Suppose p is a prime. Prove that \mathbb{F}_{p^m} can be embedded into \mathbb{F}_{p^n} if and only if m|n. (Hint. (\Rightarrow) consider \mathbb{F}_{p^n} as a vector space over \mathbb{F}_{p^m} . (\Leftarrow) show that $x^{p^m} x | x^{p^n} x$.)
 - (b) Suppose $f(x) \in \mathbb{F}_p[x]$ is a monic irreducible polynomial of degree d. Prove that $f(x)|x^{p^d} x$. (Hint. There is a field extension E/\mathbb{F}_p and $\alpha \in E$ such that $E = \mathbb{F}_p[\alpha]$ and $f(\alpha) = 0$.)
 - (c) Suppose $f(x) \in \mathbb{F}_p[x]$ is irreducible and $f(x)|x^{p^n} x$.

Prove that deg f|n. (Hint. Argue that there is $\alpha \in \mathbb{F}_{p^n}$ such that $f(\alpha) = 0$; consider $\mathbb{F}_p[\alpha] \subseteq \mathbb{F}_{p^n}$ and use part (a).)

(d) Let $P_d := \{f(x) \in \mathbb{F}_p[x] | \deg f = d, f \text{ is monic irreducible} \}$. Prove that

$$\prod_{d|n} \prod_{f(x)\in P_d} f(x) = x^{p^n} - x.$$

Deduce that $p^n = \sum_{d|n} d|P_d|$. (Hint. $x^{p^n} - x$ is square-free.)

Remark. Using Möbius inversion, we can get a closed formula for the number of irreducible monic polynomials of degree n over \mathbb{F}_p ,

$$|\mathsf{P}_n| = \frac{1}{n} \sum_{d|n} \mu(n/d) p^d.$$

In particular, we can deduce that $|P_n| > 0$ (why?).

2. Suppose p is prime and $a \in \mathbb{F}_p^{\times}$. Prove that $x^p - x + a$ is irreducible in $\mathbb{F}_p[x]$. (Hint. Suppose E is a splitting field of $x^p - x + a$ over \mathbb{F}_p , and $\alpha \in E$ is a zero of $f(x) := x^p - x + a$. Prove that $\alpha + i$ is a zero of f(x) for any

 $i \in \mathbb{F}_p$, and deduce that $f(x) = \prod_{i \in \mathbb{F}_p} (x - \alpha - i)$. Suppose $\deg \mathfrak{m}_{\alpha,\mathbb{F}_p} = d$; consider the coefficient of x^{d-1} of $\mathfrak{m}_{\alpha,\mathbb{F}_p}(x)$ to deduce d = p.)

3. Suppose $p_1(x), \ldots, p_n(x)$ are irreducible in $\mathbb{F}_p[x]$. Suppose E is a splitting field of $\prod_{i=1}^{n} p_i(x)$ over \mathbb{F}_p . Prove that

$$[\mathsf{E}: \mathbb{F}_p] = \operatorname{lcm}_{i=1}^n \operatorname{deg} p_i.$$

(**Hint**. Let $\mathfrak{m} := \operatorname{lcm}_{i=1}^{n} \operatorname{deg} p_{i}$. Then $p_{i}(x)|x^{p^{\mathfrak{m}}} - x$; deduce that $\mathbb{F}_{p^{\mathfrak{m}}}$ contains a splitting field of $\prod_{i=1}^{n} p_{i}(x)$. On the other hand, argue that $\operatorname{deg} p_{i}|[E : \mathbb{F}_{p}]$ for any i.)

- 4. Suppose m, n ∈ Z⁺, d := gcd(m, n), and l := lcm(m, n). Identify F_{p^m} and F_{pⁿ} with certain subfields of F_{p¹}; this can be done because of problem 1 (a).
 - (a) Show that \mathbb{F}_{p^d} can be identified with $\mathbb{F}_{p^m} \cap \mathbb{F}_{p^n}$.
 - (b) Prove that $\mathbb{F}_{p^d} \otimes_{\mathbb{F}_p} \mathbb{F}_{p^d} \simeq \bigoplus_{i=1}^d \mathbb{F}_{p^d}$ as \mathbb{F}_p -algebras. (Hint. Suppose $f(x) \in \mathbb{F}_p[x]$ is a monic irreducible polynomial of degree d. Prove that \mathbb{F}_{p^d} is a splitting field of f(x) over \mathbb{F}_p and $\mathbb{F}_{p^d} \simeq \mathbb{F}_p[x]/\langle f(x) \rangle$.)

- (c) Prove that $\mathbb{F}_{p^m} \otimes_{\mathbb{F}_{p^d}} \mathbb{F}_{p^n} \simeq \mathbb{F}_{p^l}$ as \mathbb{F}_{p^d} -algebras. (Hint. Show that $\theta : \mathbb{F}_{p^m} \otimes_{\mathbb{F}_{p^d}} \mathbb{F}_{p^n} \to \mathbb{F}_{p^l}, \theta(a \otimes b) = ab$ gives us a well-defined \mathbb{F}_{p^d} -algebra homomorphism. Show that $\mathrm{Im}(\theta)$ is a field that has copies of \mathbb{F}_{p^m} and \mathbb{F}_{p^n} as subfields. Deduce that θ is onto. Compare the dimension of both sides as \mathbb{F}_{p^d} -vector spaces to deduce that θ is injective.)
- (d) Prove that $\mathbb{F}_{p^n} \otimes_{\mathbb{F}_p} \mathbb{F}_{p^m} \simeq \bigoplus_{i=1}^d \mathbb{F}_{p^i}$ as \mathbb{F}_p -algebras. (Hint. $\mathbb{F}_{p^n} \otimes_{\mathbb{F}_p} \mathbb{F}_{p^m} \simeq \mathbb{F}_{p^n} \otimes_{\mathbb{F}_{p^d}} \mathbb{F}_{p^d} \otimes_{\mathbb{F}_p} \mathbb{F}_{p^d} \otimes_{\mathbb{F}_{p^d}} \mathbb{F}_{p^m}$.)

Splitting fields.

- 1. Suppose F is a field, $f(x) \in F[x] \setminus F$, and E is a splitting field of f(x) over E.
 - (a) Prove that, if $gcd(f, f') \neq 1$, then $F[x]/\langle f(x) \rangle \otimes_F E$ has a non-zero nilpotent element.
 - (b) Prove that, if gcd(f, f') = 1, then

$$F[x]/\langle f(x)\rangle \otimes_F E \simeq \underbrace{E \oplus \cdots \oplus E}_{;};$$

 $\deg f$ -times

in particular it has no non-zero nilpotent elements.

- 2. Suppose $E \subseteq \mathbb{C}$ is a splitting field of $x^p 2$ over \mathbb{Q} where p is a prime.
 - (a) Prove that $E = \mathbb{Q}[\zeta_p, \sqrt[p]{2}]$ where $\zeta_p = e^{\frac{2\pi i}{p}}$.
 - (b) Prove that $[E : \mathbb{Q}] = p(p-1)$. (Hint. Show that $[\mathbb{Q}[\sqrt[q]{2}] : \mathbb{Q}] = p$ and $[\mathbb{Q}[\zeta_p] : \mathbb{Q}] = p 1$ and use gcd(p, p 1) = 1 to deduce $p(p 1)|[E : \mathbb{Q}]$. Use $[E : \mathbb{Q}] = [E : \mathbb{Q}[\zeta_p]][\mathbb{Q}[\zeta_p] : \mathbb{Q}]$ to deduce $[E : \mathbb{Q}] \leq p(p-1)$.)

Tower of fields.

- 1. Suppose $a_i \in \mathbb{Q}^{\times}$. Prove that $\sqrt[3]{2} \notin \mathbb{Q}[\sqrt{a_1}, \dots, \sqrt{a_n}]$.
- 2. Suppose F is a field and its characteristic is not 2. Let $a, b \in F^{\times} \setminus F^{\times 2}$. Prove that

$$[\mathsf{F}[\sqrt{\mathfrak{a}},\sqrt{\mathfrak{b}}]:\mathsf{F}]=4 \Leftrightarrow \mathfrak{a}\mathfrak{b}\notin\mathsf{F}^{\times 2}.$$

3. Suppose F is a field and $[F[\alpha] : F]$ is odd. Prove that $F[\alpha] = F[\alpha^2]$.