Math200b, homework 4

Golsefidy

February 2019

Direct sum vs direct product.

1. Suppose $\left\{M_{i}\right\}_{i \in I}$ is a family of A-modules and N is an A-module. Prove that
(a) $\operatorname{Hom}_{\mathcal{A}}\left(\oplus_{i \in I} M_{i}, N\right) \simeq \prod_{i \in I} \operatorname{Hom}_{\mathcal{A}}\left(M_{i}, N\right)$,
(b) $\operatorname{Hom}_{\mathcal{A}}\left(\mathrm{N}, \prod_{i \in \mathrm{I}} \mathrm{M}_{\mathrm{i}}\right) \simeq \prod_{\mathrm{i} \in \mathrm{I}} \operatorname{Hom}_{\mathcal{A}}\left(\mathrm{N}, \mathrm{M}_{\mathfrak{i}}\right)$ as abelian groups.
2. (a) Let $\phi \in \operatorname{Hom}\left(\prod_{i=1}^{\infty} \mathbb{Z}, \mathbb{Z}\right)$; let $e_{j} \in \prod_{i=1}^{\infty} \mathbb{Z}$ be

$$
e_{j}(i):=0 \text { if } \mathfrak{i} \neq \mathfrak{j} \text { and } e_{i}(i)=1 .
$$

Suppose $\phi\left(e_{j}\right)=n_{j} \neq 0$ for any j. Choose a sequence of positive integers $1=: k_{1}<k_{2}<\cdots$ such that

$$
\begin{equation*}
k_{j+1} \nmid k_{j}!M_{j} . \tag{1}
\end{equation*}
$$

Consider

$$
\begin{equation*}
\Sigma:=\left\{\left(a_{i}\right)_{i=1}^{\infty} \mid a_{i} \in\left\{0, k_{i}!\right\}\right\} . \tag{2}
\end{equation*}
$$

(a-1) Argue why there are two distinct elements $\left(a_{i}\right)_{i=1}^{\infty}$ and $\left(a_{\mathfrak{i}}^{\prime}\right)_{i=1}^{\infty}$ of Σ such that

$$
\begin{equation*}
\phi\left(\left(a_{i}\right)_{i=1}^{\infty}\right)=\phi\left(\left(a_{i}^{\prime}\right)_{i=1}^{\infty}\right) . \tag{3}
\end{equation*}
$$

(a-2) Suppose \mathfrak{i}_{0} is the first index where $a_{i_{0}} \neq a_{i_{0}}^{\prime}$. Show that

$$
\phi\left(\left(a_{i_{0}}-a_{i_{0}}^{\prime}\right) e_{i_{0}}\right) \notin \mathrm{k}_{\mathrm{i}_{0}+1} \mathbb{Z}, \quad \text { (Hint: use (1)) }
$$

and

$$
\begin{aligned}
& \phi\left(\left(\mathrm{a}_{\mathrm{i}_{0}}-\mathrm{a}_{\mathrm{i}_{0}}^{\prime}\right) e_{i_{0}}\right) \in \mathrm{k}_{\mathrm{i}_{0}+1} \mathbb{Z} ; \quad \text { (Hint: use (2) and (3)) } \\
& \text { and get a contradiction. }
\end{aligned}
$$

(b) Use part (a) to deduce

$$
\begin{array}{r}
\operatorname{Hom}\left(\prod_{i=1}^{\infty} \mathbb{Z}, \mathbb{Z}\right) \rightarrow \bigoplus_{i=1}^{\infty} \mathbb{Z} \\
\phi \mapsto\left(\phi\left(e_{i}\right)\right)_{i=1}^{\infty}
\end{array}
$$

is an isomorphism. (Hint: suppose $\oplus_{i=1}^{\infty} \mathbb{Z} \subseteq \operatorname{ker} \phi$; then show $p^{n} \mid \phi\left(p a_{1}, p^{2} a_{2}, p^{3} a_{3}, \ldots\right)$ for any n and deduce that $\phi\left(p a_{1}, p^{2} a_{2}, p^{3} a_{3}, \ldots\right)=0$; observe that any element $\left(b_{1}, b_{2}, \ldots\right)$ can be written as a sum of two elements of the form ($2 a_{1}, 2^{2} a_{2}, \ldots$) and ($\left.3 a_{1}, 3^{2} a_{2}, \ldots\right)$).
(c) Use part (b) to show $\prod_{i=1}^{\infty} \mathbb{Z}$ is not a free abelian group.
(d) Use part (b) to show

$$
\operatorname{Hom}\left(\prod_{i=1}^{\infty} \mathbb{Z} / \bigoplus_{i=1}^{\infty} \mathbb{Z}, \mathbb{Z}\right)=0
$$

Towards Artin-Wedderburn's theorem.

Suppose M is a simple A-module and let $D:=\operatorname{End}_{A}(M)$.

1. Prove that $\operatorname{End}_{A}\left(M^{n}\right) \simeq M_{n}(D)$ as rings.
2. Suppose M_{i} 's are simple A-modules, and $M_{i} \not \approx M_{j}$ as A-modules.
(a) For $\phi \in \operatorname{End}_{\mathcal{A}}\left(\oplus_{i=1}^{m} M_{i}^{n_{i}}\right)$, prove that

$$
\phi\left(M_{i}^{n_{i}}\right) \subseteq M_{i}^{n_{i}} .
$$

(b) Prove that

$$
\operatorname{End}_{A}\left(\oplus_{i=1}^{m} M_{i}^{\mathfrak{n}_{i}}\right) \simeq M_{n_{1}}\left(D_{1}\right) \oplus \cdots \oplus M_{n_{m}}\left(D_{m}\right)
$$

as rings where $D_{i}:=\operatorname{End}_{\mathcal{A}}\left(M_{i}\right)$.
3. Suppose $A \simeq M_{1}^{\mathfrak{n}_{1}} \oplus \cdots \oplus M_{m}^{\mathfrak{n}_{m}}$ as A-modules, where $M_{i}{ }^{\prime}$ s are simple A-modules and $M_{i} \neq M_{\mathfrak{j}}$. Prove that

$$
A \simeq M_{\mathfrak{n}_{1}}\left(D_{1}^{\mathrm{op}}\right) \oplus \cdots \oplus M_{\mathfrak{n}_{m}}\left(D_{m}^{\mathrm{op}}\right)
$$

where $D_{i}=\operatorname{End}_{A}\left(M_{i}\right)$ are division rings.
Remark. Using problem 5 of the first homework set of math200a, you can show that the group ring $\mathbb{C G}$ of a finite group G is isomorphic to $M_{1}^{n_{1}} \oplus \cdots \oplus M_{m}^{n_{m}}$ as a \mathbb{C}-module. And so by the above problem after showing $D_{i}=\mathbb{C}$, you get

$$
\mathbb{C G} \simeq M_{n_{1}}(\mathbb{C}) \oplus \cdots \oplus M_{n_{m}}(\mathbb{C}) ;
$$

this gives us a lot of information on irreducible representations of G. (It is the starting point of representation theory of finite groups.)

Nilpotent matrices.

1. Suppose k is a field and N_{1} and N_{2} are two nilpotent matrices in $M_{n}(k)$. Prove that N_{1} and N_{2} are similar if and only if $\operatorname{dim}_{k} \operatorname{ker}\left(\mathrm{~N}_{1}^{j}\right)=\operatorname{dim}_{\mathrm{k}} \operatorname{ker}\left(\mathrm{N}_{2}^{\mathrm{j}}\right)$ for any $\boldsymbol{j} \in[1 . . n]$.
2. Suppose A is a reduced unital commutative ring; that means $\operatorname{Nil}(A)=0$ (A has no non-zero nilpotent element). Suppose $N \in M_{n}(A)$ is a nilpotent matrix. Prove that $\mathrm{N}^{\mathrm{n}}=0$.
(Hint: the same statement for fields \Rightarrow for integral domains \Rightarrow for A / p where $\mathfrak{p} \in \operatorname{Spec}(A) \Rightarrow$ the general case.)

Diagonalizable matrices.

Suppose k is a field, $A \in M_{n}(k)$, and the characteristic polynomial $f_{A}(x)=\prod_{i=1}^{m}\left(x-\lambda_{i}\right)^{k_{i}}$ where $\lambda_{i} \in k$ and $\lambda_{i} \neq \lambda_{j}$ if $\mathfrak{i} \neq j$.

1. Suppose A is diagonalizable over k; that means for some $g \in G L_{n}(k), g A g^{-1}$ is a diagonal matrix. Prove that $m_{A}(x)=\prod_{i=1}^{m}\left(x-\lambda_{i}\right)$ where $m_{A}(x)$ is the minimal polynomial of A.
2. Prove that A is diagonalizable over k if and only if the minimal polynomial $m_{A}(x)$ of A has distinct zeros.
3. Suppose $A_{1}, \ldots, A_{l} \in M_{n}(k)$ are diagonalizable and pairwise commuting; that means $A_{i} A_{j}=A_{j} A_{i}$ for any i, j. Prove that A_{i} 's are simultaneously diagonalizable; that means there is $g \in G L_{n}(k)$ such that $g A_{i} g^{-1}$ is diagonalizable for any i.
(Hint: Suppose λ_{i} 's are distinct eigenvalues of λ_{1}. Show

$$
k^{n}=\oplus_{i=1}^{m} \operatorname{ker}\left(A-\lambda_{i} I\right), \quad A_{j}\left(\operatorname{ker}\left(A-\lambda_{i} I\right)\right) \subseteq \operatorname{ker}\left(A-\lambda_{i} I\right) ;
$$

and prove the claim by induction on l.)
4. Suppose $\left\{A_{i}\right\}_{i \in I}$ is a family of pairwise commuting diagonalizable elements of $M_{n}(k)$ where k is a field. Prove that A_{i} 's are simultaneously diagonalizable.
(Hint: Consider the k-span of $\left\{A_{i}\right\}_{i \in \mathrm{I}}$.)

Noetherian and a finite cover of $\operatorname{Spec}(A)$.

Suppose A is a unital commutative ring. For $f \in A$, let $O_{f}:=$ $\{\mathfrak{p} \in \operatorname{Spec}(A) \mid f \notin \mathfrak{p}\}$ and $A_{f}:=S_{f}^{-1} \mathcal{A}$ where $S_{f}:=\left\{1, f, f^{2}, \ldots\right\}$.

1. Show that for $f_{i} \in A$ and $n \in \mathbb{Z}^{+}$, we have $O_{f_{i}^{n}}=O_{f_{i}}$ and

$$
\bigcup_{i=1}^{m} O_{f_{i}}=\operatorname{Spec}(A) \Leftrightarrow\left\langle f_{1}, \ldots, f_{\mathfrak{m}}\right\rangle=A .
$$

2. Suppose $\bigcup_{i=1}^{m} O_{f_{i}}=\operatorname{Spec}(A)$. Suppose M is an A-module, and $N \subseteq M$ is a submodule. Suppose $S_{f_{i}}^{-1} N=S_{f_{i}}^{-1} M$ for any i. Prove that $N=M$.
(Hint: For $x \in M$, consider $\{a \in A \mid a x \in N\}$.)
3. Suppose $\bigcup_{i=1}^{m} O_{f_{i}}=\operatorname{Spec}(A)$. Suppose M is an A-module, and $S_{f_{i}}^{-1} M$ is a finitely generated $A_{f_{i}}$-module for any i. Prove that M is a finitely generated A-module.
(Hint: Use the previous problem.)
4. Suppose $\bigcup_{i=1}^{m} O_{f_{i}}=\operatorname{Spec}(A)$, and $A_{f_{i}}$'s are Noetherian. Prove that A is Noetherian.
(Hint: Use the previous problem for $\mathfrak{a} \unlhd A$)
(Remark. Based on the previous homework assignment, you can see that $O_{f} \rightarrow \operatorname{Spec}\left(\mathcal{A}_{f}\right), \mathfrak{p} \mapsto S_{f}^{-1} \mathfrak{p}$ is a bijection. So we are more or less saying that having a Noetherian (affine) finite cover of $\operatorname{Spec}(A)$ implies that A is Noetherian.)

Projective module.

1. Suppose P and P^{\prime} are projective A-modules, and

$$
0 \rightarrow K \rightarrow P \xrightarrow{f} M \rightarrow 0
$$

and

$$
0 \rightarrow \mathrm{~K}^{\prime} \rightarrow \mathrm{P}^{\prime} \xrightarrow{\mathrm{f}^{\prime}} M \rightarrow 0
$$

are short exact sequences of A-modules. Prove that

$$
P \oplus K^{\prime} \simeq P^{\prime} \oplus K
$$

Hint: Let $L:=\left\{\left(x, x^{\prime}\right) \in P \oplus P^{\prime} \mid f(x)=f^{\prime}\left(x^{\prime}\right)\right\}$. Show that L is a submodule of $P \oplus P^{\prime}$. Notice that the following diagram is commuting and each row and column is an exact sequence; and then use the assumption that P and
P^{\prime} are projective to deduce $L \simeq P \oplus K^{\prime}$ and $L \simeq P^{\prime} \oplus K$:

2. Suppose (A, m) is a local unital commutative ring; that means $\operatorname{Max}(A)=\{\mathfrak{m}\}$.
(a) (Nakayama's lemma) Suppose M is a finitely generated A-module. Suppose $M=\mathfrak{m M}$ where

$$
\mathfrak{m} M=\left\{\sum_{i=1}^{n} a_{i} x_{i} \mid a_{i} \in \mathfrak{m}, x_{i} \in M\right\} .
$$

Prove that $M=0$.
(Hint: Let y_{1}, \ldots, y_{d} be a generating set of M. By assumption, $\exists \mathfrak{a}_{\mathfrak{i j}} \in \mathfrak{m}$ such that

$$
y_{i}=\sum_{j=1}^{d} a_{i j} y_{j} .
$$

Hence $\left(I-\left[a_{i j}\right]\right)\left(\begin{array}{c}y_{1} \\ \vdots \\ y_{d}\end{array}\right)=0$. Show that $I-\left[a_{i j}\right] \in$
$G L_{d}(A)$; and deduce $y_{i}=0$; and so $M=0$.)
(b) Suppose M is a finitely generated A-module. Prove that

$$
d(M)=\operatorname{dim}_{A / m} M / m M,
$$

where $M / m M$ is viewed as a vector space over A / m. (Hint: It is clear that $d(M) \geq \operatorname{dim}_{A / m} M / m M$; now suppose $y_{1}+m M, \ldots, y_{d}+m M$ is an A / m-basis of $M / m M$, and let N be the submodule of M that is generated by y_{i} 's. Use part (a) for M / N. .)
(c) (f.g. projective \Rightarrow locally free) Suppose P is a finitely generated projective A-module. Prove that A is free.
(Hint: Suppose $d(P)=d$; so there is a S.E.S.

$$
0 \rightarrow \mathrm{~N} \rightarrow \mathrm{~A}^{\mathrm{d}} \rightarrow \mathrm{P} \rightarrow 0 .
$$

Since P is projective, we have that there is an A module isomorphism $\phi: A^{\mathrm{d}} \xrightarrow{\sim} P \oplus N$. Show that $\phi\left(\mathfrak{m} A^{d}\right)=\mathfrak{m P} \oplus \mathfrak{m N}$; and then use part (b).)
(Remark. This exercise implies that for an arbitrary unital commutative ring A, a finitely generated projective module P is locally free; that means for any $\mathfrak{p} \in \operatorname{Spec}(A), M_{p}$ is a free A_{p}-module. The converse of this statement is true as well: a f.g. locally free module is projective.)
3. Suppose A is an integral domian.
(a) Show that a submodule of a finitely generated free A-module is a free A-module if and only if A is a PID.
(b) Suppose (A, m) is a Noetherian local ring, as well. Show that a submodule of a finitely generated projective A-module is projective if and only if A is a PID.
(c) Is a submodule of a finitely generated projective A module necessarily projective?
(Hint: show that $\mathrm{k}\left[\mathrm{x}_{1}, \chi_{2}\right]_{\left\langle\mathrm{x}_{1}, x_{2}\right\rangle}$ is a local Noetherian integral domain which is not a PID; or come up with your own example.)

