Math200b, homework 4

Golsefidy

February 2019

Direct sum vs direct product.

- 1. Suppose $\{M_i\}_{i \in I}$ is a family of A-modules and N is an A-module. Prove that
 - (a) $\operatorname{Hom}_{A}(\bigoplus_{i \in I} M_{i}, N) \simeq \prod_{i \in I} \operatorname{Hom}_{A}(M_{i}, N)$,
 - (b) $\operatorname{Hom}_A(N, \prod_{i \in I} M_i) \simeq \prod_{i \in I} \operatorname{Hom}_A(N, M_i)$

as abelian groups.

2. (a) Let $\phi \in \text{Hom}(\prod_{i=1}^{\infty} \mathbb{Z}, \mathbb{Z})$; let $e_j \in \prod_{i=1}^{\infty} \mathbb{Z}$ be

 $e_i(i) := 0$ if $i \neq j$ and $e_i(i) = 1$.

Suppose $\phi(e_j) = n_j \neq 0$ for any j. Choose a sequence of positive integers $1 =: k_1 < k_2 < \cdots$ such that

$$\mathbf{k}_{j+1} \nmid \mathbf{k}_j ! \mathbf{n}_j. \tag{1}$$

Consider

$$\Sigma := \{ (a_i)_{i=1}^{\infty} | a_i \in \{0, k_i!\} \}.$$
(2)

(a-1) Argue why there are two distinct elements $(a_i)_{i=1}^{\infty}$ and $(a'_i)_{i=1}^{\infty}$ of Σ such that

$$\phi((\mathfrak{a}_{i})_{i=1}^{\infty}) = \phi((\mathfrak{a}_{i}')_{i=1}^{\infty}). \tag{3}$$

(a-2) Suppose i_0 is the first index where $a_{i_0} \neq a'_{i_0}$. Show that

$$\phi((\mathfrak{a}_{\mathfrak{i}_0}-\mathfrak{a}'_{\mathfrak{i}_0})\notin k_{\mathfrak{i}_0+1}\mathbb{Z}, \quad \text{(Hint: use (1))}$$

and

$$\phi((a_{i_0}-a'_{i_0})e_{i_0}) \in k_{i_0+1}\mathbb{Z};$$
 (Hint: use (2) and (3))

and get a contradiction.

(b) Use part (a) to deduce

$$\operatorname{Hom}(\prod_{i=1}^{\infty} \mathbb{Z}, \mathbb{Z}) \to \bigoplus_{i=1}^{\infty} \mathbb{Z},$$
$$\varphi \mapsto (\varphi(e_i))_{i=1}^{\infty}$$

is an isomorphism. (Hint: suppose $\bigoplus_{i=1}^{\infty} \mathbb{Z} \subseteq \ker \phi$; then show $p^n | \phi(pa_1, p^2a_2, p^3a_3, \ldots)$ for any n and deduce that $\phi(pa_1, p^2a_2, p^3a_3, \ldots) = 0$; observe that any element (b_1, b_2, \ldots) can be written as a sum of two elements of the form $(2a_1, 2^2a_2, \ldots)$ and $(3a_1, 3^2a_2, \ldots)$.)

- (c) Use part (b) to show $\prod_{i=1}^{\infty} \mathbb{Z}$ is not a free abelian group.
- (d) Use part (b) to show

$$\operatorname{Hom}(\prod_{i=1}^{\infty} \mathbb{Z}/\bigoplus_{i=1}^{\infty} \mathbb{Z}, \mathbb{Z}) = 0.$$

Towards Artin-Wedderburn's theorem.

Suppose M is a simple A-module and let $D := End_A(M)$.

1. Prove that $\operatorname{End}_A(\mathcal{M}^n) \simeq \operatorname{M}_n(D)$ as rings.

2. Suppose M_i 's are simple A-modules, and $M_i \neq M_j$ as A-modules.

(a) For
$$\phi \in \text{End}_{A}(\bigoplus_{i=1}^{m} M_{i}^{n_{i}})$$
, prove that

$$\phi(M_i^{n_i}) \subseteq M_i^{n_i}.$$

(b) Prove that

$$\operatorname{End}_{A}(\bigoplus_{i=1}^{\mathfrak{m}} \mathcal{M}_{i}^{\mathfrak{n}_{i}}) \simeq \operatorname{M}_{\mathfrak{n}_{1}}(\mathsf{D}_{1}) \oplus \cdots \oplus \operatorname{M}_{\mathfrak{n}_{\mathfrak{m}}}(\mathsf{D}_{\mathfrak{m}})$$

as rings where $D_i := End_A(M_i)$.

3. Suppose $A \simeq M_1^{n_1} \oplus \cdots \oplus M_m^{n_m}$ as A-modules, where M_i 's are simple A-modules and $M_i \neq M_j$. Prove that

$$A \simeq M_{\mathfrak{n}_1}(\mathsf{D}_1^{\mathrm{op}}) \oplus \cdots \oplus M_{\mathfrak{n}_m}(\mathsf{D}_m^{\mathrm{op}})$$

where $D_i = End_A(M_i)$ are division rings.

Remark. Using problem 5 of the first homework set of math200a, you can show that the group ring $\mathbb{C}G$ of a finite group G is isomorphic to $M_1^{n_1} \oplus \cdots \oplus M_m^{n_m}$ as a $\mathbb{C}G$ -module. And so by the above problem after showing $D_i = \mathbb{C}$, you get

$$\mathbb{C}G \simeq M_{n_1}(\mathbb{C}) \oplus \cdots \oplus M_{n_m}(\mathbb{C});$$

this gives us a lot of information on irreducible representations of G. (It is the starting point of representation theory of finite groups.)

Nilpotent matrices.

- Suppose k is a field and N₁ and N₂ are two nilpotent matrices in M_n(k). Prove that N₁ and N₂ are similar if and only if dim_k ker(N^j₁) = dim_k ker(N^j₂) for any j ∈ [1..n].
- Suppose A is a <u>reduced</u> unital commutative ring; that means Nil(A) = 0 (A has no non-zero nilpotent element).
 Suppose N ∈ M_n(A) is a nilpotent matrix. Prove that Nⁿ = 0.

(Hint: the same statement for fields \Rightarrow for integral domains \Rightarrow for A/p where $p \in \text{Spec}(A) \Rightarrow$ the general case.)

Diagonalizable matrices.

Suppose k is a field, $A \in M_n(k)$, and the characteristic polynomial $f_A(x) = \prod_{i=1}^m (x - \lambda_i)^{k_i}$ where $\lambda_i \in k$ and $\lambda_i \neq \lambda_j$ if $i \neq j$.

- 1. Suppose A is diagonalizable over k; that means for some $g \in GL_n(k)$, gAg^{-1} is a diagonal matrix. Prove that $m_A(x) = \prod_{i=1}^{m} (x \lambda_i)$ where $m_A(x)$ is the minimal polynomial of A.
- 2. Prove that A is diagonalizable over k if and only if the minimal polynomial $m_A(x)$ of A has distinct zeros.
- Suppose A₁,..., A_l ∈ M_n(k) are diagonalizable and pairwise commuting; that means A_iA_j = A_jA_i for any i, j. Prove that A_i's are simultaneously diagonalizable; that means there is g ∈ GL_n(k) such that gA_ig⁻¹ is diagonalizable for any i.

(Hint: Suppose λ_i 's are distinct eigenvalues of A_1 . Show

 $k^{n} = \bigoplus_{i=1}^{m} \ker(A - \lambda_{i}I), \ A_{j}(\ker(A - \lambda_{i}I)) \subseteq \ker(A - \lambda_{i}I);$

and prove the claim by induction on l.)

 Suppose {A_i}_{i∈I} is a family of pairwise commuting diagonalizable elements of M_n(k) where k is a field. Prove that A_i's are simultaneously diagonalizable.

(Hint: Consider the k-span of $\{A_i\}_{i \in I}$.)

Noetherian and a finite cover of Spec(A).

Suppose A is a unital commutative ring. For $f \in A$, let $O_f := {\mathfrak{p} \in \operatorname{Spec}(A) | f \notin \mathfrak{p}}$ and $A_f := S_f^{-1}A$ where $S_f := {1, f, f^2, \ldots}$.

1. Show that for $f_i \in A$ and $n \in \mathbb{Z}^+$, we have $O_{f_i^n} = O_{f_i}$ and

$$\bigcup_{i=1}^{m} O_{f_i} = \operatorname{Spec}(A) \Leftrightarrow \langle f_1, \ldots, f_m \rangle = A.$$

2. Suppose $\bigcup_{i=1}^{m} O_{f_i} = \text{Spec}(A)$. Suppose M is an A-module, and N \subseteq M is a submodule. Suppose $S_{f_i}^{-1}N = S_{f_i}^{-1}M$ for any i. Prove that N = M.

(Hint: For $x \in M$, consider $\{a \in A | ax \in N\}$.)

Suppose ∪_{i=1}^m O_{fi} = Spec(A). Suppose M is an A-module, and S⁻¹_{fi}M is a finitely generated A_{fi}-module for any i. Prove that M is a finitely generated A-module.

(Hint: Use the previous problem.)

4. Suppose $\bigcup_{i=1}^{m} O_{f_i} = \text{Spec}(A)$, and A_{f_i} 's are Noetherian. Prove that A is Noetherian.

(Hint: Use the previous problem for $\mathfrak{a} \trianglelefteq A$)

(Remark. Based on the previous homework assignment, you can see that $O_f \rightarrow \text{Spec}(A_f), \mathfrak{p} \mapsto S_f^{-1}\mathfrak{p}$ is a bijection. So we are more or less saying that having a Noetherian (affine) finite cover of Spec(A) implies that A is Noetherian.)

Projective module.

1. Suppose P and P' are projective A-modules, and

$$0 \to \mathsf{K} \to \mathsf{P} \xrightarrow{\mathsf{f}} \mathsf{M} \to 0$$

and

$$0 \to \mathsf{K}' \to \mathsf{P}' \xrightarrow{\mathsf{f}'} \mathsf{M} \to 0$$

are short exact sequences of A-modules. Prove that

$$P \oplus K' \simeq P' \oplus K.$$

Hint: Let $L := \{(x, x') \in P \oplus P' | f(x) = f'(x')\}$. Show that L is a submodule of $P \oplus P'$. Notice that the following diagram is commuting and each row and column is an exact sequence; and then use the assumption that P and

P' are projective to deduce $L \simeq P \oplus K'$ and $L \simeq P' \oplus K$:

- Suppose (A, m) is a <u>local</u> unital commutative ring; that means Max(A) = {m}.
 - (a) (Nakayama's lemma) Suppose M is a finitely generated A-module. Suppose M = mM where

$$\mathfrak{m}M = \{\sum_{i=1}^{n} a_{i}x_{i} | a_{i} \in \mathfrak{m}, x_{i} \in M\}.$$

Prove that M = 0.

(Hint: Let y_1, \ldots, y_d be a generating set of M. By assumption, $\exists a_{ij} \in m$ such that

$$y_i = \sum_{j=1}^d a_{ij} y_j.$$

Hence $(I - [a_{ij}])\begin{pmatrix} y_1 \\ \vdots \\ y_d \end{pmatrix} = 0$. Show that $I - [a_{ij}] \in GL_d(A)$; and deduce $y_i = 0$; and so M = 0.)

(b) Suppose M is a finitely generated A-module. Prove that

$$\mathbf{d}(\mathbf{M}) = \dim_{\mathbf{A}/\mathbf{m}} \mathbf{M}/\mathbf{m}\mathbf{M},$$

where M/mM is viewed as a vector space over A/m.

(Hint: It is clear that $d(M) \ge \dim_{A/m} M/mM$; now suppose $y_1 + mM, \ldots, y_d + mM$ is an A/m-basis of M/mM, and let N be the submodule of M that is generated by y_i 's. Use part (a) for M/N.)

(c) (f.g. projective \Rightarrow locally free) Suppose P is a finitely generated projective A-module. Prove that A is free.

(Hint: Suppose d(P) = d; so there is a S.E.S.

$$0 \to \mathbf{N} \to \mathbf{A}^{\mathbf{d}} \to \mathbf{P} \to 0.$$

Since P is projective, we have that there is an A-module isomorphism $\phi : A^d \xrightarrow{\sim} P \oplus N$. Show that $\phi(\mathfrak{m}A^d) = \mathfrak{m}P \oplus \mathfrak{m}N$; and then use part (b).)

(Remark. This exercise implies that for an arbitrary unital commutative ring A, a finitely generated projective module P is locally free; that means for any $p \in \text{Spec}(A)$, M_p is a free A_p -module. The converse of this statement is true as well: a f.g. locally free module is projective.)

- 3. Suppose A is an integral domian.
 - (a) Show that a submodule of a finitely generated free A-module is a free A-module if and only if A is a PID.
 - (b) Suppose (A, m) is a Noetherian local ring, as well. Show that a submodule of a finitely generated projective A-module is projective if and only if A is a PID.

(c) Is a submodule of a finitely generated projective A-module necessarily projective?
(Hint: show that k[x1, x2]⟨x1, x2⟩ is a local Noetherian integral domain which is not a PID; or come up with your own example.)