Math200b, homework 3

Golsefidy

January 2019

Localizing a module.

Reading before problem. Suppose A is a unital commutative ring, $S \subseteq A$ is a multiplicatively closed subset, and M is an A-module. We can localize M with respect to S as we did A. Namely on $M \times S$ we define the following relation:

$$
\left(m_{1}, s_{1}\right) \sim\left(m_{2}, s_{2}\right) \Rightarrow \exists s \in S, s\left(s_{1} m_{2}-s_{2} m_{1}\right)=0 .
$$

Convince yourself that \sim is an equivalence relation on $M \times S$, and let $\frac{\mathrm{m}}{\mathrm{s}}:=[(\mathrm{m}, \mathrm{s})]$, and

$$
S^{-1} M:=\left\{\left.\frac{m}{s} \right\rvert\, m \in M, s \in S\right\} .
$$

Let $\frac{\mathfrak{m}_{1}}{s_{1}}+\frac{\mathfrak{m}_{2}}{s_{2}}:=\frac{s_{2} \mathfrak{m}_{1}+s_{1} \mathfrak{m}_{2}}{s_{1} s_{2}}$; convince yourself that this is a welldefined operation and $\left(S^{-1} M,+\right)$ is an abelian group.

For $\frac{a}{s} \in S^{-1} A$ and $\frac{m}{s^{\prime}} \in S^{-1} M$, let $\frac{a}{s} \cdot \frac{m}{s^{\prime}}:=\frac{a m}{s s^{\prime}}$. Convince yourself that it is well-defined, and it makes $S^{-1} M$ an $S^{-1} A$ module.

For $\mathfrak{p} \in \operatorname{Spec}(A)$, we let $M_{\mathfrak{p}}:=S_{\mathfrak{p}}^{-1} M$ where $S_{\mathfrak{p}}:=A \backslash \mathfrak{p}$.

1. Suppose M is an A-module. Prove that

$$
\begin{aligned}
M=0 & \Longleftrightarrow \forall \mathfrak{p} \in \operatorname{Spec}(A), M_{\mathfrak{p}}=0 \\
& \Longleftrightarrow \forall \mathfrak{m} \in \operatorname{Max}(A), M_{\mathfrak{m}}=0
\end{aligned}
$$

(Hint: Clearly the only non-trivial part is why $\forall \mathrm{m} \in$ $\operatorname{Max}(A), M_{\mathfrak{m}}=0$ implies $M=0$. For $x \in M$, consider $\operatorname{ann}(x):=\{a \in A \mid a x=0\}$ and show that it cannot be proper.)
2. Let $\phi: M_{1} \rightarrow M_{2}$ be an A-module homomorphism. Suppose S is a multiplicatively closed subset of A. Let $S^{-1} \phi: S^{-1} \mathcal{M}_{1} \rightarrow S^{-1} \mathcal{M}_{2},\left(\mathrm{~S}^{-1} \phi\right)\left(\frac{\mathfrak{m}_{1}}{s}\right):=\frac{\phi\left(m_{1}\right)}{s}$. Show that $S^{-1} \phi$ is a well-defined $S^{-1} A$-module homomorphism.
(For $\mathfrak{p} \in \operatorname{Spec}(\mathcal{A})$, we let $\phi_{\mathfrak{p}}:=S_{\mathfrak{p}}^{-1} \phi$ where $S_{\mathfrak{p}}:=A \backslash \mathfrak{p}$.)
(Note: suppose M_{1} is a submodule of M_{2}. Observe that $S^{-1} M_{1}$ is a submodule of $S^{-1} M_{2}$ and convince yourself that $S^{-1} M_{2} / S^{-1} M_{1} \simeq S^{-1}\left(M_{2} / M_{1}\right)$.)
3. Let $\phi: M_{1} \rightarrow M_{2}$ be an A-module homomorphism. Prove that
ϕ is injective $\Longleftrightarrow \forall \mathfrak{m} \in \operatorname{Max}(A), \phi_{\mathfrak{m}}$ is injective.
(Hint: Show that ker $\left.\phi_{\mathfrak{m}}=(\operatorname{ker} \phi)_{\mathfrak{m}}.\right)$
4. Show that
ϕ is surjective $\Longleftrightarrow \forall \mathfrak{m} \in \operatorname{Max}(A), \phi_{\mathfrak{m}}$ is surjective.
(Hint: Consider the co-kernel of ϕ; that means $M_{2} / \operatorname{Im} \phi$. And the co-kernels of ϕ_{m}.)

Spec of a localized ring.

Reading before problem. Suppose A is a unital commutative ring and S is a multiplicatively closed set. As we saw above, if $\mathfrak{a} \unlhd A$, then $S^{-1} \mathfrak{a} \unlhd S^{-1} A$; and $S^{-1}(A / \mathfrak{a}) \simeq S^{-1} A / S^{-1} \mathfrak{a}$ as
$S^{-1} A$-modules. Convince yourself that this implies $\bar{S}^{-1}(A / a) \simeq$ $S^{-1} \mathcal{A} / S^{-1} \mathfrak{a}$ as rings where $\bar{S}:=\{s+\mathfrak{a} \in A / \mathfrak{a} \mid s \in S\}$.

1. Suppose $\widetilde{\mathfrak{a}}$ is an ideal of $S^{-1} A$. Let

$$
\mathfrak{a}:=\left\{a \in A \left\lvert\, \frac{a}{1} \in \widetilde{\mathfrak{a}}\right.\right\} .
$$

Prove that $\mathfrak{a} \unlhd A$ and $\widetilde{\mathfrak{a}}=S^{-1} \mathfrak{a}$.
2. Let $O_{S}:=\{\mathfrak{p} \in \operatorname{Spec} A \mid \mathfrak{p} \cap S=\varnothing\}$. Let

$$
\Phi: \mathcal{O}_{S} \rightarrow \operatorname{Spec}\left(\mathrm{~S}^{-1} \mathcal{A}\right), \Phi(\mathfrak{p}):=\mathrm{S}^{-1} \mathfrak{p}
$$

and

$$
\Psi: \operatorname{Spec}\left(S^{-1} \mathcal{A}\right) \rightarrow O_{S}, \Psi(\widetilde{\mathfrak{p}}):=\left\{a \in \mathcal{A} \left\lvert\, \frac{a}{1} \in \widetilde{\mathfrak{p}}\right.\right\} .
$$

Prove that Φ and Ψ are well-defined and they are inverse of each other.
(And so there is a bijection between prime ideals of $S^{-1} A$ and prime ideals of A that do not intersect S.)
(Hint: (a) You have to show $S^{-1} \mathfrak{p}$ is prime if \mathfrak{p} is prime.
(b) Think about

$$
S^{-1} A / S^{-1} \mathfrak{p} \simeq \bar{S}^{-1}(A / \mathfrak{p}) \hookrightarrow \text { field of fractions of } A / p
$$

(c) Next you have to show

$$
\left.\mathfrak{p}_{1}, \mathfrak{p}_{2} \in \operatorname{Spec} \mathcal{A}, S^{-1} \mathfrak{p}_{1}=S^{-1} \mathfrak{p}_{2} \Rightarrow \mathfrak{p}_{1}=\mathfrak{p}_{2} .\right)
$$

Rank vs minimum number of generators.

Reading before problem. A module M is called Noetherian if the following (equivalent) statements hold:
(a) Any chain $\left\{N_{i}\right\}_{i \in \mathrm{I}}$ of submodules of M has a maximal.
(b) Any non-empty set Σ of submodules of M has a maximal element.
(c) M satisfies the ascending chain condition (a.c.c.); that means if $N_{1} \subseteq N_{2} \subseteq \cdots$ are submodules of M, then $\exists i_{0}$ such that $\mathrm{N}_{\mathrm{i}_{0}}=\mathrm{N}_{\mathrm{i}_{0}+1}=\cdots$.
(d) All the submodules of M are finitely generated.

Go over Lecture 18 of math 200a and see that similar arguments imply the above statements are equivalent.

Observe that A is a Noetherian ring if and only if A is a Noetherian A-module.

1. (a) Suppose N is a submodule of M. Prove that
M is Noetherian $\Longleftrightarrow N$ and M / N are Noetherian.
(b) Suppose A is a Noetherian ring, and M is a finitely generated A-module. Prove that M is Noetherian.
2. (a) Suppose A is a Noetherian unital commutative ring, and $\phi: A^{n} \rightarrow A^{m}$ is an injective A-module homomorphism. Prove that $n \leq m$.
(Hint: If not, $\phi\left(A^{n}\right) \oplus A^{n-m} \subseteq A^{n}$; use this to deduce that for any $i \in \mathbb{Z}^{+}$we have
$\phi^{i}\left(A^{n}\right) \oplus \phi^{i-1}\left(A^{n}-m\right) \oplus \phi^{i-2}\left(A^{n-m}\right) \oplus \cdots \oplus A^{n-m} \subseteq A^{n} ;$
from here deduce that

$$
\begin{aligned}
A^{n-m} & \subsetneq A^{n-m} \oplus \phi\left(A^{n-m}\right) \\
& \left.\subsetneq A^{n-m} \oplus \phi\left(A^{n-m}\right) \oplus \phi^{2}\left(A^{n-m}\right) \subsetneq \cdots \subseteq A^{n} .\right)
\end{aligned}
$$

(b) Suppose A is a unital commutative ring, and $\phi: A^{n} \rightarrow$ A^{m} is an A-module homomorphism. Prove that $n \leq m$.
(Hint: Suppose $x_{\phi}:=\left[a_{i j}\right]$ is the associated matrix; and let A_{0} be the subring of A which is generated by $a_{i j}{ }^{\prime}$ s. Consider $\left.\phi\right|_{A_{0}^{n}}$, discuss why $\left.\phi\right|_{A_{0}^{n}}: A_{0}^{n} \rightarrow A_{0}^{m}$ is an injective A_{0}-module homomorphism. Use Hilbert's basis theorem and part (a) to finish the proof.)
(c) Suppose A is a unital commutative ring, and M is a finitely generated A-module. Let

$$
\begin{aligned}
d(M):= & \text { minimum number of generators of } M, \\
\operatorname{rank}(M):= & \text { maximum number of } A \text {-linearly } \\
& \text { independent elements of } M .
\end{aligned}
$$

Prove that $\operatorname{rank}(M) \leq d(M)$.
(Hint: Let $d(M)=n$ and $\operatorname{rank}(M)=m$. Then there are a surjective A-module homomorphism $\phi: A^{n} \rightarrow M$ and an injective A-module homomorphism $\psi: A^{m} \rightarrow M$. So, for any $1 \leq i \leq m, \exists v_{i} \in A^{n}$ such that $\phi\left(v_{i}\right)=\psi\left(e_{i}\right)$ where e_{i} 's are the standard A-basis of A^{m}. Let $\theta\left(e_{i}\right):=v_{i}$ and extend it to an A-module hom $\theta: A^{m} \rightarrow A^{n}$ such that

is a commuting diagram. Deduce that θ is injective and finish the proof.)
(Note: In class, we proved the case where A is an integral domain.)
3. Suppose \mathcal{A} is a unital commutative ring and M is an A-module. Suppose $d(M)=\operatorname{rank}(M)=n$. Prove that $M \simeq A^{n}$.
 commuting diagram. Deduce that

$$
\begin{equation*}
\theta\left(A^{n}\right) \oplus \operatorname{ker} \phi \subseteq A^{n} . \tag{1}
\end{equation*}
$$

Based on an argument similar to 2(a) and (1) get a contradiction if A is Noetherian and ker $\phi \neq 0$. Finish the proof based on a similar argument as in 2(b).)

Smith form and its applications.

1. Let D be a PID and F be its field of fractions. For $A \in$ $M_{n, m}(D)$, let

$$
\begin{aligned}
\mathrm{N}_{A}(\mathrm{~F}) & :=\left\{v \in \mathrm{~F}^{\mathrm{m}} \mid A v=0\right\} \text { and } \mathrm{N}_{\mathrm{A}}(\mathrm{D}):=\mathrm{N}_{\mathrm{A}}(\mathrm{~F}) \cap \mathrm{D}^{m} \\
\mathrm{R}_{A}(\mathrm{~F}) & :=\left\{\mathrm{A} v \in \mathrm{~F}^{n} \mid v \in \mathrm{~F}^{m}\right\} \\
\mathrm{R}_{A}(\mathrm{D}) & :=\left\{\mathrm{A} v \in \mathrm{D}^{n} \mid v \in \mathrm{D}^{m}\right\} .
\end{aligned}
$$

(a) Prove that $D^{m} / N_{A}(D)$ is a free D-module; and deduce that D^{m} has a D-basis x_{1}, \ldots, x_{m} such that $N_{A}(D)=$ $D x_{r+1} \oplus \cdots \oplus D x_{m}$, where $r=\operatorname{dim}_{F} R_{A}(F)$.
(b) Prove that there is a D-basis y_{1}, \cdots, y_{n} of D^{n} and $\mathrm{d}_{1}, \cdots, \mathrm{~d}_{\mathrm{r}} \in \mathrm{D}$ such that

$$
\mathrm{d}_{1}|\cdots| \mathrm{d}_{\mathrm{r}} \text {, and } \mathrm{R}_{\mathrm{A}}(\mathrm{D})=\mathrm{Dd}_{1} \mathrm{y}_{1} \oplus \cdots \oplus \mathrm{Dd}_{\mathrm{r}} \mathrm{y}_{\mathrm{r}},
$$

where $r=\operatorname{dim}_{F} R_{A}(F)$.
(c) Let x_{i} 's be as in part (a). Prove that there is a D-basis $\left\{x_{1}^{\prime}, \cdots, x_{r}^{\prime}\right\}$ of $D x_{1} \oplus \cdots \oplus D x_{r}$ such that $A x_{i}^{\prime}=d_{i} y_{i}$ for any $1 \leq i \leq r$.
(d) Prove that

$$
\left[x_{1}^{\prime} \cdots x_{r}^{\prime} x_{r+1} \cdots x_{m}\right] \in \operatorname{GL}_{m}(D),\left[y_{1} \cdots y_{n}\right] \in \operatorname{GL}_{n}(D),
$$

and
$A\left[x_{1}^{\prime} \cdots x_{r}^{\prime} x_{r+1} \cdots x_{m}\right]=\left[y_{1} \cdots y_{n}\right]\left(\begin{array}{cc}\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{r}\right) & 0 \\ 0 & 0\end{array}\right)$
where $\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{r}\right)$ is the diagonal matrix with diagonal entries d_{i} 's.
(e) (Smith form of A) Prove that there are $\gamma_{1} \in G L_{n}(D), \gamma_{2} \in$ $\mathrm{GL}_{\mathrm{m}}(\mathrm{D})$ and $\mathrm{d}_{1}\left|\mathrm{~d}_{2}\right| \cdots \mid \mathrm{d}_{\mathrm{r}}$ in D such that

$$
A=\gamma_{1}\left(\begin{array}{cc}
\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{r}\right) & 0 \\
0 & 0
\end{array}\right) \gamma_{2}
$$

2. Let $A \in M_{n}(\mathbb{Z})$, and $M_{A}:=\mathbb{Z}^{n} / R_{A}(\mathbb{Z})$. Suppose $A=$ $\gamma_{1}\left(\begin{array}{cc}\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{m}\right) & 0 \\ 0 & 0\end{array}\right) \gamma_{2}$ is a Smith form of A.
(a) Prove that $M_{A} \simeq \mathbb{Z}^{n-m} \oplus \bigoplus_{i=1}^{m} \mathbb{Z} / d_{i} \mathbb{Z}$.
(b) Prove that M_{A} is finite if and only if $\operatorname{det} \mathcal{A} \neq 0$.
(c) Suppose $\operatorname{det} A \neq 0$. Prove that $\left|M_{A}\right|=|\operatorname{det} A|$.
3. Let k be a field, and $A \in M_{n}(k[x])$. Suppose $\operatorname{det} A \neq 0$. Suppose $A=\gamma_{1}\left(\begin{array}{cc}\operatorname{diag}\left(d_{1}(x), d_{2}(x), \ldots, d_{m}(x)\right) & 0 \\ 0 & 0\end{array}\right) \gamma_{2}$ is a Smith form of A.
(a) Prove that $\mathrm{m}=\mathrm{n}$ and (as $\mathrm{k}[x]$-modules)

$$
k[x]^{n} / R_{A}(k[x]) \simeq \bigoplus_{i=1}^{n} k[x] / d_{i}(x) k[x] .
$$

(b) Prove that $\operatorname{dim}_{k}\left(k[x]^{n} / R_{A}(k[x])\right)=\operatorname{deg}(\operatorname{det}(A))$.
4. Let k be a field, and $A \in M_{n}(k)$. Suppose

$$
x I-A=\gamma_{1}\left(\begin{array}{cc}
\operatorname{diag}\left(f_{1}(x), f_{2}(x), \ldots, f_{m}(x)\right) & 0 \\
0 & 0
\end{array}\right) \gamma_{2}
$$

is a Smith form of $x I-A \in M_{n}(k[x])$. Suppose m is the largest integer such that $\operatorname{deg} f_{\mathfrak{m}-1}=0$.
(a) Think about k^{n} as a $\mathrm{k}[x]$-module with scalar multiplication $x \cdot v:=A v$. Let

$$
\phi: k[x]^{n} \rightarrow k^{n}, \phi\left(\sum_{i=0}^{\infty} x^{i} v_{i}\right):=\sum_{i=0}^{\infty} A^{i} v_{i}
$$

for $v_{i} \in k^{n}$. Prove that ϕ is a $k[x]$-module homomorphism and $\operatorname{ker} \phi=R_{\mathcal{A}}(k[x])$.
(b) Prove that as $k[x]$-modules

$$
k[x]^{n} / R_{A}(k[x]) \simeq \bigoplus_{i=m}^{n} k[x] / f_{i}(x) k[x] .
$$

(c) Prove that $\operatorname{diag}\left(c\left(f_{m}\right), \ldots, c\left(f_{n}\right)\right)$ is the rational canonical form of A where $c\left(f_{i}\right)$ is the companion matrix of the polynomial f_{i}.
(Note: This gives us an effective algorithm to find invariant factors of a matrix.)

