Math200b, homework 3

Golsefidy

January 2019

Localizing a module.

Reading before problem. Suppose A is a unital commutative ring, $S \subseteq A$ is a multiplicatively closed subset, and M is an A-module. We can <u>localize</u> M with respect to S as we did A. Namely on $M \times S$ we define the following relation:

$$(\mathfrak{m}_1, \mathfrak{s}_1) \sim (\mathfrak{m}_2, \mathfrak{s}_2) \Longrightarrow \exists \mathfrak{s} \in \mathfrak{S}, \mathfrak{s}(\mathfrak{s}_1\mathfrak{m}_2 - \mathfrak{s}_2\mathfrak{m}_1) = 0$$

Convince yourself that ~ is an equivalence relation on $M \times S$, and let $\frac{m}{s} := [(m, s)]$, and

$$S^{-1}M := \{\frac{\mathfrak{m}}{\mathfrak{s}} | \mathfrak{m} \in \mathcal{M}, \mathfrak{s} \in S\}.$$

Let $\frac{m_1}{s_1} + \frac{m_2}{s_2} := \frac{s_2m_1+s_1m_2}{s_1s_2}$; convince yourself that this is a well-defined operation and $(S^{-1}M, +)$ is an abelian group.

For $\frac{a}{s} \in S^{-1}A$ and $\frac{m}{s'} \in S^{-1}M$, let $\frac{a}{s} \cdot \frac{m}{s'} := \frac{am}{ss'}$. Convince yourself that it is well-defined, and it makes $S^{-1}M$ an $S^{-1}A$ -module.

For $\mathfrak{p} \in \operatorname{Spec}(A)$, we let $M_{\mathfrak{p}} := S_{\mathfrak{p}}^{-1}M$ where $S_{\mathfrak{p}} := A \setminus \mathfrak{p}$.

1. Suppose M is an A-module. Prove that

$$M = 0 \iff \forall \mathfrak{p} \in \operatorname{Spec}(A), M_{\mathfrak{p}} = 0$$
$$\iff \forall \mathfrak{m} \in \operatorname{Max}(A), M_{\mathfrak{m}} = 0.$$

(Hint: Clearly the only non-trivial part is why $\forall \mathfrak{m} \in Max(A), M_{\mathfrak{m}} = 0$ implies M = 0. For $x \in M$, consider $ann(x) := \{ \mathfrak{a} \in A | \mathfrak{a} x = 0 \}$ and show that it cannot be proper.)

2. Let $\phi : M_1 \to M_2$ be an A-module homomorphism. Suppose S is a multiplicatively closed subset of A. Let $S^{-1}\phi : S^{-1}M_1 \to S^{-1}M_2, (S^{-1}\phi)(\frac{m_1}{s}) := \frac{\phi(m_1)}{s}$. Show that $S^{-1}\phi$ is a well-defined $S^{-1}A$ -module homomorphism.

(For $\mathfrak{p} \in \operatorname{Spec}(A)$, we let $\phi_{\mathfrak{p}} := S_{\mathfrak{p}}^{-1} \phi$ where $S_{\mathfrak{p}} := A \setminus \mathfrak{p}$.)

(Note: suppose M_1 is a submodule of M_2 . Observe that $S^{-1}M_1$ is a submodule of $S^{-1}M_2$ and convince yourself that $S^{-1}M_2/S^{-1}M_1 \simeq S^{-1}(M_2/M_1)$.)

3. Let $\phi : M_1 \rightarrow M_2$ be an A-module homomorphism. Prove that

 ϕ is injective $\iff \forall \mathfrak{m} \in Max(A), \phi_{\mathfrak{m}}$ is injective.

(Hint: Show that $\ker \phi_{\mathfrak{m}} = (\ker \phi)_{\mathfrak{m}}$.)

4. Show that

 ϕ is surjective $\iff \forall \mathfrak{m} \in Max(A), \phi_{\mathfrak{m}}$ is surjective.

(Hint: Consider the co-kernel of ϕ ; that means $M_2/\text{Im}\phi$. And the co-kernels of ϕ_m .)

Spec of a localized ring.

Reading before problem. Suppose A is a unital commutative ring and S is a multiplicatively closed set. As we saw above, if $a \leq A$, then $S^{-1}a \leq S^{-1}A$; and $S^{-1}(A/a) \simeq S^{-1}A/S^{-1}a$ as

S⁻¹A-modules. Convince yourself that this implies $\overline{S}^{-1}(A/\mathfrak{a}) \simeq$ S⁻¹A/S⁻¹ \mathfrak{a} as rings where $\overline{S} := \{s + \mathfrak{a} \in A/\mathfrak{a} | s \in S\}.$

1. Suppose \tilde{a} is an ideal of S⁻¹A. Let

$$\mathfrak{a} := \{\mathfrak{a} \in \mathcal{A} | \frac{\mathfrak{a}}{1} \in \widetilde{\mathfrak{a}} \}.$$

Prove that $\mathfrak{a} \leq A$ and $\widetilde{\mathfrak{a}} = S^{-1}\mathfrak{a}$.

2. Let $O_S := \{ \mathfrak{p} \in \operatorname{Spec} A | \mathfrak{p} \cap S = \emptyset \}$. Let

$$\Phi: \mathcal{O}_{\mathsf{S}} \to \operatorname{Spec}(\mathsf{S}^{-1}\mathsf{A}), \Phi(\mathfrak{p}) := \mathsf{S}^{-1}\mathfrak{p},$$

and

$$\Psi: \operatorname{Spec}(\mathsf{S}^{-1}\mathsf{A}) \to \mathcal{O}_{\mathsf{S}}, \Psi(\widetilde{\mathfrak{p}}) := \{\mathfrak{a} \in \mathsf{A} \mid \frac{\mathfrak{a}}{1} \in \widetilde{\mathfrak{p}}\}.$$

Prove that Φ and Ψ are well-defined and they are inverse of each other.

(And so there is a bijection between prime ideals of $S^{-1}A$ and prime ideals of A that do not intersect S.)

(Hint: (a) You have to show S⁻¹p is prime if p is prime.
(b) Think about

 $S^{-1}A/S^{-1}\mathfrak{p} \simeq \overline{S}^{-1}(A/\mathfrak{p}) \hookrightarrow$ field of fractions of A/\mathfrak{p} .

(c) Next you have to show

 $\mathfrak{p}_1, \mathfrak{p}_2 \in \operatorname{Spec} \mathcal{A}, \mathcal{S}^{-1}\mathfrak{p}_1 = \mathcal{S}^{-1}\mathfrak{p}_2 \Longrightarrow \mathfrak{p}_1 = \mathfrak{p}_2.$

Rank vs minimum number of generators.

Reading before problem. A module M is called <u>Noetherian</u> if the following (equivalent) statements hold:

- (a) Any chain $\{N_i\}_{i \in I}$ of submodules of M has a maximal.
- (b) Any non-empty set Σ of submodules of M has a maximal element.
- (c) M satisfies the ascending chain condition (a.c.c.); that means if $N_1 \subseteq N_2 \subseteq \cdots$ are submodules of M, then $\exists i_0$ such that $N_{i_0} = N_{i_0+1} = \cdots$.
- (d) All the submodules of M are finitely generated.

Go over Lecture 18 of math 200a and see that similar arguments imply the above statements are equivalent.

Observe that A is a Noetherian ring if and only if A is a Noetherian A-module.

1. (a) Suppose N is a submodule of M. Prove that

M is Noetherian \iff N and M/N are Noetherian.

(b) Suppose A is a Noetherian ring, and M is a finitely generated A-module. Prove that M is Noetherian.

2. (a) Suppose A is a Noetherian unital commutative ring, and φ : Aⁿ → A^m is an injective A-module homomorphism. Prove that n ≤ m.

(**Hint**: If not, $\phi(A^n) \oplus A^{n-m} \subseteq A^n$; use this to deduce that for any $i \in \mathbb{Z}^+$ we have

 $\varphi^{i}(A^{n}) \oplus \varphi^{i-1}(A^{n}-m) \oplus \varphi^{i-2}(A^{n-m}) \oplus \cdots \oplus A^{n-m} \subseteq A^{n};$

from here deduce that

$$A^{n-m} \subsetneq A^{n-m} \oplus \phi(A^{n-m})$$
$$\subsetneq A^{n-m} \oplus \phi(A^{n-m}) \oplus \phi^2(A^{n-m}) \subsetneq \dots \subseteq A^n.)$$

(b) Suppose A is a unital commutative ring, and $\phi : A^n \rightarrow A^m$ is an A-module homomorphism. Prove that $n \leq m$.

(**Hint**: Suppose $x_{\phi} := [a_{ij}]$ is the associated matrix; and let A_0 be the subring of A which is generated by a_{ij} 's. Consider $\phi|_{A_0^n}$, discuss why $\phi|_{A_0^n} : A_0^n \to A_0^m$ is an injective A_0 -module homomorphism. Use Hilbert's basis theorem and part (a) to finish the proof.)

(c) Suppose A is a unital commutative ring, and M is a finitely generated A-module. Let

d(M) := minimum number of generators of M, rank(M) := maximum number of A-linearly independent elements of M.

Prove that $rank(M) \leq d(M)$.

(**Hint**: Let d(M) = n and rank(M) = m. Then there are a surjective A-module homomorphism $\phi : A^n \to M$ and an injective A-module homomorphism $\psi : A^m \to M$. So, for any $1 \le i \le m$, $\exists v_i \in A^n$ such that $\phi(v_i) = \psi(e_i)$ where e_i 's are the standard A-basis of A^m . Let $\theta(e_i) := v_i$ and extend it to an A-module hom $\theta : A^m \to A^n$ such that

(Note: In class, we proved the case where A is an integral domain.)

Suppose A is a unital commutative ring and M is an A-module. Suppose d(M) = rank(M) = n. Prove that M ≃ Aⁿ.

(Hint: As above there is θ such that $A^n \xrightarrow{\varphi} M$ is a commuting diagram. Deduce that

$$\theta(A^n) \oplus \ker \phi \subseteq A^n.$$

Based on an argument similar to 2(a) and (1) get a contra-
diction if A is Noetherian and ker
$$\phi \neq 0$$
. Finish the proof

(1)

based on a similar argument as in 2(b).)

Smith form and its applications.

1. Let D be a PID and F be its field of fractions. For $A \in M_{n,m}(D)$, let

$$N_A(F) := \{ v \in F^m | Av = 0 \} \text{ and } N_A(D) := N_A(F) \cap D^m$$
$$R_A(F) := \{ Av \in F^n | v \in F^m \}$$
$$R_A(D) := \{ Av \in D^n | v \in D^m \}.$$

(a) Prove that $D^m/N_A(D)$ is a free D-module; and deduce that D^m has a D-basis x_1, \ldots, x_m such that $N_A(D) = Dx_{r+1} \oplus \cdots \oplus Dx_m$, where $r = \dim_F R_A(F)$.

(b) Prove that there is a D-basis y_1, \dots, y_n of D^n and $d_1, \dots, d_r \in D$ such that

$$d_1|\cdots|d_r$$
, and $R_A(D) = Dd_1y_1 \oplus \cdots \oplus Dd_ry_r$,

where $r = \dim_F R_A(F)$.

(c) Let x_i 's be as in part (a). Prove that there is a D-basis $\{x'_1, \dots, x'_r\}$ of $Dx_1 \oplus \dots \oplus Dx_r$ such that $Ax'_i = d_iy_i$ for any $1 \le i \le r$.

(d) Prove that

$$[x'_1 \cdots x'_r x_{r+1} \cdots x_m] \in \operatorname{GL}_m(D), [y_1 \cdots y_n] \in \operatorname{GL}_n(D),$$

and

$$A[\mathbf{x}'_{1}\cdots\mathbf{x}'_{r}\mathbf{x}_{r+1}\cdots\mathbf{x}_{m}] = [\mathbf{y}_{1}\cdots\mathbf{y}_{n}] \begin{pmatrix} \operatorname{diag}(\mathbf{d}_{1},\mathbf{d}_{2},\ldots,\mathbf{d}_{r}) & 0\\ 0 & 0 \end{pmatrix}$$

where $diag(d_1, d_2, \dots, d_r)$ is the diagonal matrix with diagonal entries d_i 's.

(e) (Smith form of A) Prove that there are $\gamma_1 \in GL_n(D), \gamma_2 \in GL_m(D)$ and $d_1|d_2|\cdots|d_r$ in D such that

$$\mathbf{A} = \boldsymbol{\gamma}_1 \begin{pmatrix} \operatorname{diag}(\mathbf{d}_1, \mathbf{d}_2, \dots, \mathbf{d}_r) & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} \boldsymbol{\gamma}_2$$

- 2. Let $A \in M_n(\mathbb{Z})$, and $M_A := \mathbb{Z}^n/R_A(\mathbb{Z})$. Suppose $A = \gamma_1 \begin{pmatrix} \operatorname{diag}(d_1, d_2, \dots, d_m) & 0 \\ 0 & 0 \end{pmatrix} \gamma_2$ is a Smith form of A. (a) Prove that $M \to \mathbb{Z}^{n-m} \oplus \mathbb{O}^m \mathbb{Z}/d\mathbb{Z}$
 - (a) Prove that $M_A \simeq \mathbb{Z}^{n-m} \oplus \bigoplus_{i=1}^m \mathbb{Z}/d_i\mathbb{Z}$.
 - (b) Prove that M_A is finite if and only if det $A \neq 0$.
 - (c) Suppose det $A \neq 0$. Prove that $|M_A| = |\det A|$.

3. Let k be a field, and $A \in M_n(k[x])$. Suppose det $A \neq 0$. Suppose $A = \gamma_1 \begin{pmatrix} \operatorname{diag}(d_1(x), d_2(x), \dots, d_m(x)) & 0 \\ 0 & 0 \end{pmatrix} \gamma_2$ is a Smith form of A.

(a) Prove that m = n and (as k[x]-modules)

$$k[x]^n/R_A(k[x]) \simeq \bigoplus_{i=1}^n k[x]/d_i(x)k[x].$$

(b) Prove that $\dim_k (k[x]^n/R_A(k[x])) = \deg(\det(A))$.

4. Let k be a field, and $A \in M_n(k)$. Suppose

$$\mathbf{x}\mathbf{I} - \mathbf{A} = \gamma_1 \begin{pmatrix} \operatorname{diag}(\mathbf{f}_1(\mathbf{x}), \mathbf{f}_2(\mathbf{x}), \dots, \mathbf{f}_m(\mathbf{x})) & 0 \\ 0 & 0 \end{pmatrix} \gamma_2$$

is a Smith form of $xI - A \in M_n(k[x])$. Suppose m is the largest integer such that $\deg f_{m-1} = 0$.

(a) Think about k^n as a k[x]-module with scalar multiplication $x \cdot v := Av$. Let

$$\phi: k[x]^n \to k^n, \phi\left(\sum_{i=0}^{\infty} x^i v_i\right) := \sum_{i=0}^{\infty} A^i v_i$$

for $v_i \in k^n$. Prove that ϕ is a k[x]-module homomorphism and ker $\phi = R_A(k[x])$. (b) Prove that as k[x]-modules

$$k[x]^n/R_A(k[x]) \simeq \bigoplus_{i=m}^n k[x]/f_i(x)k[x].$$

(c) Prove that $\operatorname{diag}(c(f_m), \ldots, c(f_n))$ is the rational canonical form of A where $c(f_i)$ is the companion matrix of the polynomial f_i .

(Note: This gives us an effective algorithm to find invariant factors of a matrix.)