Homework 2

1) (Opposite ring) (a) Let R be a unital ring. Prove that End $(R) \simeq R^{o p}$ as rings.
(b) Suppose $\exists \tau: R \rightarrow R$ st. $\tau(x+y)=\tau(x)+\tau(y)$

- $\tau(x y)=\tau(y) \tau(x)$
- $\tau(\tau(x))=x$.

Prove that $R \simeq R^{O P}$.
(c) Prove that $M_{n}(R)^{O P} \simeq M_{n}\left(R^{O P}\right)$; in particular $M_{n}(R)^{o p} \simeq M_{n}(R)$ if R is commutative.
(d) Suppose G is a group and $\mathbb{C} G$ is the group ring of Goer \mathbb{C}. Prove that $\mathbb{C} G^{\sigma p} \simeq \mathbb{C} G$.
(e) [NOT part of HW assignment] Can you find a ring R such that $R \nsim R^{O P}$?
21. (Torsion submod.) Suppose R is an integral domain and M is an $R-\bmod$. Let $\operatorname{Tor}(M):=\{m \in M \mid \exists r \in R \backslash\{0\}, r m=0\}$.
(a) Prove that $\operatorname{Tor}(M)$ is a submod. of M.
(b) $\operatorname{Tor}(M / \operatorname{Tor}(M))=0 . \quad(M / \operatorname{Tar} M)$ is torsion-free. $)$

Homework 2
3. (Annihilator) Let R be a unital ring and M be an R-mod.

The annihilator $A n n(M)$ of M is

$$
\text { Ann }(M):=\{r \in R \mid \forall m \in M, r \cdot m=0\} .
$$

And the annihilator $A_{n n}(m)$ of an element m of M is

$$
\operatorname{Ann}(m):=\{r \in R \mid r \cdot m=0\} .
$$

(Notice that $\operatorname{Ann}(M)=\bigcap_{m \in M} \operatorname{Ann}(m)$.)
(a) Prove that $A_{n n}(m)$ is a left ideal.
(b) Give an example where $A n n(m)$ is NOT a two-sided ideal. (Hint. For instance think about $M_{n}(\mathbb{C})$; you have seen before that ideals of $M_{n}(R)$ are of the form $M_{n}(I)$ where $I \triangleleft R$; in particular $M_{n}(D)$ does not have a nen-trivial two sided ideal if D is a division ring.)
(c) Prove that $A_{n n}(M)$ is a (both sided) ideal of R.
(d) Find a $\mathbb{Z}-\bmod . M$ st. $A_{n n}(M)=0$ and $\forall \operatorname{me} M, A_{n n}(m) \neq 0$.
(Remark. We say M is a faithful $R \bmod$ if $A_{n n}(M)=0$.)
(e) $A_{n} R-\bmod M$ is an $R / A_{n n}(M)^{-\bmod }$ w.r.t.

$$
\left(r+A_{n n}(M)\right) \cdot x:=r \cdot x \text { scalar multiplication. }
$$

4.) Let R be a unital ring, $I \triangleleft R$, and M be an $R-\bmod$.

Let $I M:=\left\{\sum_{i=1}^{m} r_{i} x_{i} \mid r_{i} \in I, x_{i} \in M\right\}$.
(a) Prove that IM is a submodule of M.
(b) Prove that $I \subseteq A_{n n}(M / I M)$; and deduce that
$M / I M$ can be viewed as an $R / I^{-m o d}$ via

$$
(r+I) \cdot(x+I M):=r x+I M
$$

5. Let $V=\oplus_{i=1}^{\infty} \mathbb{C} v_{i}$ be a countable dimensional vector space over \mathbb{C}. Let $R:=E_{n d}(V)$. Prove that as R-modules $R \simeq R \oplus R$.
(Hint. Use "projection" to odd and even components (or any other partition to two infinite sets.))
6. Let G be a group, and M be an abelian group. Give an

Homework 2
Friday, January 26, 2018
explicit bijection between the set of linear G-actions on M and $\mathbb{Z} G$-module structures on M.
(You can use without proof that a linear G-action on M is given by $\operatorname{Hom}(G, \operatorname{Aut}(M)) \quad$ (group homomorphisms).)

Reading before problem Determinant can be defined for matrices with entries in a unital commutative ring:

$$
\operatorname{det}\left[a_{i j j}\right]:=\sum_{\sigma \in S_{n}} \operatorname{sgn}(\sigma) \prod_{i=1}^{n} a_{i \sigma(i)} \text {, where }
$$

S_{n} is the symmetric group, and $\operatorname{sgn}: S_{n} \longrightarrow\{ \pm 1\}$ is the sign group homomorphism. Similar to the $n \times n$ matrices over a field, one can define minors of $x=\left[a_{i j}\right]$.

The l, k-minor of $x=\left[a_{i j}\right]$ is the determinant of the $(n-1) x(n-1)$ matrix $x(l, k)$ that one gets after removing the $l^{\text {th }}$ row and the $k^{\text {th }}$ column.

Similar to Cramer's rule, we can define the adjunct matrix

Homework 2
Saturday, January 19, 2019 10:30 AM
$\operatorname{adj}(x)$ of x. The (i, j)-entry of $\operatorname{adj}(x)$ is $(-1)^{i+j} \operatorname{det} x(j, i)$. Here are the main properties of $\operatorname{det}: M_{n}(A) \rightarrow A$.
(1) Set is multi-linear with respect to columns.
(1') et is multi-linear with respect to rows.
(2) $\operatorname{det}(I)=1$.
(3) If x has two identical rows, then $\operatorname{det} x=0$
(3) If x has two identical columns, then $\operatorname{det} x=0$
(4) $\operatorname{adj}(x) \cdot x=x \cdot \operatorname{adj}(x)=\operatorname{det}(x) I$.
(5) $\forall x, y \in M_{n}(A), \quad \operatorname{det}(x y)=\operatorname{det}(x) \operatorname{det}(y)$.
(7) (a) Suppose A is a unital commutative ring, and $G L_{n}(A):=M_{n}(A)^{x}$. Prove that $x \in G L_{n}(A) \Leftrightarrow \operatorname{det} x \in A^{x}$.
(b) Suppose A is a unital commutative ring and $\operatorname{Max}(A)=\{1+r\}$.

Suppose $\phi: A^{n} \rightarrow A^{n}$ is an $A-\bmod$. homomorphism and let $x_{\phi} \in M_{n}(A)$ be its associated matrix. Convince yourself that ϕ is a bijection if and only if $x_{\phi} \in G L_{n}(A)$.

Prove the following statements are equivalent:

Homework 2
(1) $\phi: A^{n} \rightarrow A^{n} \quad$ is surjective.
(2) $\bar{\phi}:(A / \text { HH })^{n} \rightarrow(A / \text { THF })^{n}$ is bijective, where $\bar{\phi}$ is induced by ϕ.
(3) $\phi: A^{n} \rightarrow A^{n}$ is bijective.
(Hint. Show $(1) \Leftrightarrow(2)$ and $(2) \Leftrightarrow(3)$. Use linear algebra to show $\operatorname{det}(A) \notin$ 值.)
(c) Suppose A is a unital commutative ring, and $\phi: A^{n} \rightarrow A^{n}$ is an A-mod. homomanphism. Prove that
ϕ is surjective $\Leftrightarrow \phi$ is bijective.
(Hint. Use Problem 1.c, 1.d, 3.6)

