Homework 1
Saturday, January 12, 2019

1. Prove that the following polynomials are irreducible; p is prime.
(a) $x^{p-1}+y^{2} x^{p-2}+y^{2} x^{p-3}+\cdots+y^{2}$ in $\mathbb{Q}[x, y]$
(b) $1+\frac{x}{1!}+\frac{x^{2}}{2!}+\cdots+\frac{x^{p}}{p!}$ in $\mathbb{Q}[x]$
(c) $x^{n}-y$ in $F[x, y]$.
(d) $x^{2}+y^{2}-2$ in $F[x, y]$ where $\operatorname{char}(F) \neq 2$.
(e) $x^{4}+12 x^{3}-9 x+6$ in $\mathbb{Q}[i][x]$.
2. Prove that $x^{P^{n}}-x+a$ does not have a zero in Q if p is prime, $a \in \mathbb{Z}$, and $p \nmid a$.
3.a) Prove that in $(\mathbb{Z} / P \mathbb{Z})[x]$ we have $x(x-1) \cdots(x-(p-1))=x^{p}-x$, where p is prime.
(b) Deduce that $(p-1)!\equiv-1(\bmod p)$.
3. Suppose A is a unital commutative ring, and $q \in \operatorname{Spec} A$.
(a) Prove that $A_{p}^{x}=A_{\psi p} \backslash \nmid A_{y p}$ where

$$
\phi A_{\phi p}=\left\{\left.\frac{a}{s} \right\rvert\, a \in i \phi, \quad s \in A \backslash \nmid\right\} .
$$

(b) Prove that $\operatorname{Max}\left(A_{\propto p}\right)=\left\{中 A_{q p}\right\}$.

Homework 1
Saturday, January 12, 2019
5. Let k be a field. For a subset A of the ring $k\left[x_{1}, \ldots, x_{n}\right]$ of polynomials. Let $V(A):=\left\{\vec{v} \in k^{n} \mid \forall f\left(x_{1}, \ldots, x_{n}\right) \in A, f(\vec{v})=0\right\}$. And, for a subset x of k^{n}, let

$$
I(X):=\left\{f \in k\left[x_{1}, \cdots x_{n}\right] \mid \forall \vec{v} \in X, \quad f(\vec{v})=0\right\} .
$$

(a) Prove that $\left.I(x) \triangleleft k I x_{1}, \ldots, x_{n}\right]$.
(b) Prove that, $\forall \phi \neq A \subseteq k\left[x_{1}, \ldots, x_{n}\right], V(I(V(A)))=V(A)$.
(c) Prove that for any $\phi \neq A \subseteq k\left[x_{1}, \cdots x_{n}\right]$ there are finitely many polynomials f_{1}, \ldots, f_{m} st.

$$
V(A)=V\left(f_{1}, f_{2}, \ldots, f_{m}\right)
$$

(d) Suppose $I \triangleleft k\left[x_{1}, \ldots, x_{n}\right]$. Prove that $\sqrt{I} \subseteq I(V(I))$, where $\sqrt{I}:=\left\{f \in k\left[x_{1}, \cdots, x_{n}\right] \mid \exists m, f^{m} \in I\right\}$.

