Lecture 29: Galois group of finite fields Sunday, March 11, 2018 10:56 AM Let Fp be an algebraic closure of Fp. We have seen that for any positive integer n, there is a unique subfield of $\overline{\mathbf{F}}_{p}$ that has order p^n and it is denoted by \mathbb{F}_{p^n} and $\mathbb{F}_{p^n} = \frac{2}{\alpha} e^{\frac{p^n}{2}} = \frac{1}{\alpha} \frac{2}{2}$. If is a splitting field of $x^{p^{n}} - x$; and $x^{p} - x$ does not have multiple zeros. Hence $\mathbb{F}_{pn}/_{\mathbb{F}_p}$ is a Galois extension. Let $\sigma_p: \overline{\mathbb{F}}_p \longrightarrow \overline{\mathbb{F}}_p$, $\sigma_p(\alpha):= \alpha^p$. We have seen that σ_p is a field embedding. $\underline{Claim} \cdot \sigma_{p}(\overline{\mathbf{F}}_{p}) = \overline{\mathbf{F}}_{p} \cdot$ $\underline{PP} : \alpha \in \overline{Tp} \implies X - \alpha \text{ has a zero in } \overline{Tp} \text{ as } \overline{Tp} \text{ is algebraically}$ closed. Say $\beta_{-\chi=0}$. So $\varphi(\beta) = \alpha$. And we have already pointed out that it is an embedding. So $\mathfrak{P} \in \operatorname{Aut}(\overline{\mathfrak{F}}_{p}/\overline{\mathfrak{F}}_{p})$; since $\overline{\mathfrak{F}}_{p}/\overline{\mathfrak{F}}_{p}$ is Galois, $\mathfrak{P}| \in \operatorname{Gal}(\overline{\mathfrak{F}}_{p}/\overline{\mathfrak{F}}_{p})$. Let $\mathfrak{O}_{p,n} := \mathfrak{O}_{p}|$. Suppose $d = |\langle \mathfrak{O}_{p,n} \rangle|$. Then $\forall \alpha \in \overline{\mathfrak{F}}_{p}$, $\mathfrak{O}_{p,n}^{d}(\alpha) = \alpha \Rightarrow \alpha^{p^{d}} - \alpha = 0 \Rightarrow \overline{\mathfrak{F}}_{p} \subseteq \overline{\mathfrak{F}}_{p^{d}}$. $\Rightarrow n|d$. On the other hand, $\mathfrak{O}_{p,n}^{p}(\alpha) = \alpha^{p} = \alpha \quad \forall \alpha \in \overline{\mathfrak{F}}_{p^{n}}$. And

Lecture 29: Absolute Galois group of F_p Sunday, March 11, 2018 11:14 AM so $|\langle \sigma_{p,n} \rangle | |n \cdot \text{Hence} |\langle \sigma_{p,n} \rangle | = n = [\mathbb{H}_{p^n} : \mathbb{H}_p] = |\text{Gal}(\mathbb{H}_{p^n}/\mathbb{H}_p)|$ Therefore $\operatorname{Gal}(\mathbb{F}_{p^n/\mathbb{F}}) = \langle \mathfrak{P}_{p,n} \rangle \simeq \mathbb{Z}_{n\mathbb{Z}}.$ Since $\overline{\mathbf{F}}_{p} = \bigcup \mathbf{E}$, we get $\overline{\mathbf{F}}_{p} = \bigcup_{n=1}^{\infty} \overline{\mathbf{F}}_{n}$; and as we proved earlier: $\operatorname{Gal}(\overline{\mathbb{F}}_{p}/\overline{\mathbb{F}}_{p}) \simeq \lim_{\longleftarrow} \operatorname{Gal}(\overline{\mathbb{F}}_{p}/\overline{\mathbb{F}}_{p})$. Notice that $Gal(\mathbb{F}_{p^n}/\mathbb{F}_p) \longrightarrow Gal(\mathbb{F}_{p^m}/\mathbb{F}_p)$ $\downarrow^2 \qquad \downarrow^2 \qquad \downarrow$ if m/n And so $\operatorname{Gal}(\overline{\mathbb{F}}_{p/\overline{\mathbb{F}}_{p}}) \simeq \lim_{k \to \infty} \mathbb{Z}_{n\mathbb{Z}} := \frac{2}{3} \left(a_{k} \right)^{\infty} \in \prod(\mathbb{Z}_{k\mathbb{Z}}) \left| \frac{2}{3} \right|.$ $m|n, \alpha_n \equiv \alpha_m \pmod{m}$ (This is called the protinite closure of \mathbb{Z} , and it is denoted by $\overset{\sim}{\mathbb{Z}}$.). . Next we will study a splitting field $E \subseteq \mathbb{C}$ of $x^n - 1$ over Q. Let $\zeta_n := e^{\frac{2\pi i^n}{n}}$. Then $\chi^n - 1 = (\chi - 1)(\chi - \zeta_n) \cdots (\chi - \zeta_n^n)$. So $E = Q[1, \zeta_n, \zeta_n^2, ..., \zeta_n^{n-1}] = Q[\zeta_n]$. Since char(Q)=0, $Q[\zeta_n]/Q$ is a Galois extension. For any ore $Gal(Q[\zeta_n]/Q)$, $\sigma(\zeta_n)$ is a zero of $\chi^n - 1$. Hence $\sigma(\zeta_n) = \zeta_n^1$ for some $\sigma \leq i < n$.

Lecture 29: Cyclotomic fields Sunday, March 11, 2018 11:31 AM Since the multiplicative order $o(\zeta_n)$ is the same as $o(\sigma(\zeta_n))$, and $o(\zeta_n^2) = \frac{i}{\gcd(i,n)}$; we deduce that $\gcd(i,n) = 1$. So we get a map $\operatorname{Gal}(\operatorname{QLS}_n]_{\mathbb{Q}}) \xrightarrow{\theta} (\mathbb{Z}_n)^{\times}$, ⊢___→ io $i \stackrel{i}{\leftarrow} \sigma(\zeta_n) = \zeta_n^{i} \quad \cdot$ <u>Claim</u>. Θ is a group homomorphism; and Θ is an embedding. $\underline{\mathbb{P}}_{\bullet} \forall \mathcal{O}_{1}, \mathcal{O}_{2} \in \operatorname{Gal}(\mathbb{Q}[\zeta_{n}]/\mathbb{Q}),$ $\mathcal{O}_{l}^{\prime}\circ\mathcal{O}_{2}^{\prime}(\zeta_{n})=\mathcal{O}_{l}^{\prime}(\zeta_{n}^{\prime})=\mathcal{O}_{l}^{\prime}(\zeta_{n}^{\prime})^{\overset{i}{\circ}\mathcal{O}_{2}^{\prime}}=(\zeta_{n}^{\dot{\prime}\mathcal{O}_{1}^{\prime}})^{\overset{i}{\circ}\mathcal{O}_{2}^{\prime}}=\zeta_{n}^{\dot{\prime}\mathcal{O}_{1}^{\prime}}\cdot\overset{i}{\mathcal{O}_{2}^{\prime}}.$ Hence $i_{0_1 \circ 0_2} \equiv i_{0_1} \cdot i_{0_2} \pmod{n}$. • Since $\sigma(\xi_n)$ uniquely determines σ , θ is an embedding. We would like to prove Θ is an isomorphism. $\frac{1}{1+1} = \frac{1}{1+1}$ $m_{\alpha',F}(x) = \prod_{\sigma \in Gal} (x - \sigma(\alpha)).$ $m_{\alpha',F}(x) = \frac{1}{\sigma \in Gal}(Fix_{F})$ $m_{\alpha',F}(x) = \frac{1}{\sigma \in Gal}(Fix_{F}).$ $m_{\alpha',F}(x) = \frac{1}{\sigma \in Gal}(Fix_{F}).$ $\begin{cases} uniquely determines \sigma, & x - \sigma(x) \\ & \sigma \in Gal(FIX/F) \\ m_{x/F}(x) \cdot Hence g(x) | m_{x/F}(x) \text{ where } g(x) = \prod_{\sigma \in Gal} (x - \sigma(x)) \\ & \sigma \in Gal(FIX/F) \\ & \sigma \in Gal(FIX/F) \end{cases}$

Lecture 29: Cyclotomic fields
Sunday, March 11, 2018 1150 AM
On the other hand,
$$\sigma(q_{0}(n)) = q_{0}(n)$$
 for any $\sigma \in Gral(FDRI/F)$.
And so $q_{0}(x) \in Fix(Gral(FERI/F))[x] = FIxI. As $q_{0}(x) |m_{1/F}(x)$,
 q_{1} and m_{viF} are manic in FDXJ, and m_{viF} is irred. in FDXJ,
claim follows.
So φ is an isomorphism if and only if $m_{viF}(x) = \prod_{\substack{i \le i \le n \\ g el(i)n = 1}} (x - \zeta_{n}^{i}) \cdot H$ is called the n^{th}
 $cyclotomic polynomial.$
Def. Let $\Phi_{n}(x) := \prod_{\substack{i \le i \le n \\ g el(i,n) = 1}} (x - \zeta_{n}^{i}) + H$ is called the n^{th}
 $cyclotomic polynomial.$
 $equal (x) = \frac{1}{din} \prod_{\substack{i \le i \le n \\ g el(i,n) = din}} (x - \zeta_{n}^{i}) = \prod_{\substack{i \le i \le n \\ g el(i,n) = din}} (x - \zeta_{n}^{i}) = \prod_{\substack{i \le i \le n \\ g el(i,n) = din}} (x - \zeta_{n}^{i}) = \prod_{\substack{i \le i \le n \\ g el(i,n) = din}} (x - \zeta_{n}^{i}) = \prod_{\substack{i \le i \le n \\ g el(i,n) = din}} (x - \zeta_{n}^{i}) = \prod_{\substack{i \le i \le n \\ g el(i,n) = din}} (x - \zeta_{n}^{i}) = \prod_{\substack{i \le i \le n \\ g el(i,n) = din}} (x - \zeta_{n}^{i}) = \prod_{\substack{i \le i \le n \\ g el(i,n) = din}} (x - \zeta_{n}^{i}) = \prod_{\substack{i \le i \le n \\ g el(i,n) = din}} (x - \zeta_{n}^{i}) = \prod_{\substack{i \le i \le n \\ g el(i,n) = din}} (x - \zeta_{n}^{i}) = \prod_{\substack{i \le i \le n \\ g el(i,n) = din}} (x - \zeta_{n}^{i}) = \prod_{\substack{i \le i \le n \\ g el(i,n) = din}} (x - \zeta_{n}^{i}) = \prod_{\substack{i \le i \le n \\ g el(i,n) = din}} (x - \zeta_{n}^{i}) = \prod_{\substack{i \le i \le n \\ g el(i,n) = din}} (x - \zeta_{n}^{i}) = \prod_{\substack{i \le i \le n \\ g el(i,n) = din}} (x - \zeta_{n}^{i}) = \prod_{\substack{i \le i \le n \\ g el(i,n) = din}} (x - \zeta_{n}^{i}) = \prod_{\substack{i \le i \le n \\ g el(i,n) = din}} (x - \zeta_{n}^{i}) = \prod_{\substack{i \le i \le n \\ g el(i,n) = din}} (x - \zeta_{n}^{i}) = \prod_{\substack{i \le i \le n \\ g el(i,n) = din}} (x - \zeta_{n}^{i}) = \prod_{\substack{i \le i \le n \\ g el(i,n) = din}} (x - \zeta_{n}^{i}) = \prod_{\substack{i \le i \le n \\ g el(i,n) = din}} (x - \zeta_{n}^{i}) = \prod_{\substack{i \le i \le n \\ g el(i,n) = din}} (x - \zeta_{n}^{i}) = \prod_{\substack{i \le i \le n \\ g el(i,n) = din}} (x - \zeta_{n}^{i}) = \prod_{\substack{i \le i \le n \\ g el(i,n) = din}} (x - \zeta_{n}^{i}) = \prod_{\substack{i \le i \le n \\ g el(i,n) = din}} (x - \zeta_{n}^{i}) = \prod_{\substack{i \le i \le n \\ g el(i,n) = din}} (x - \zeta_{n}^{i}) = \prod_{\substack{i \le i \le n \\ g el(i,n) = din}} (x - \zeta_{n}^{i}) = \prod_{\substack$$