Lecture 28: Galois and normal closure Wednesday, March 7, 2018 10:50 AM The following is a corollary of Fundamental theorem of Galois theory. Corollary. Suppose E/F is a finite separable extension. Then there are only finitely many intermediate fields FCKCE. **Pf**. Suppose $E = \sum_{i=1}^{\prime} F_{\alpha_i}$. And let E' be a splitting field of $\prod m_{\alpha_i, \mp}(x)$ over F. Then E'_{+} is a finite Gabis extension. (since E_{+} is separable, $\prod_{\alpha_{i}, \neq} (\infty)$ is a separable polynomial.) Hence by the fundamental theorem of Galois theory there are only finitely many intermediate fields $F \subseteq L \subseteq E'$. Since E SE', claim follows. 🔳 . Remark. Let $F \subseteq E \subset F$; let $E \subseteq F$ be a splitting field of Z_{m} , $Z_{d,F}$. Then $E' \supseteq E$, E'_F is normal, and E' is the smallest subfield of Fwith these properties. That is why E' is called the normal closure of E. . In the above argument we shaved, if $E/_F$ is a finite separable extension, then E'_{F} is Galoi's where E' is a normal closure of E over F. this is true for infinite separable closures as well.

Lecture 28: Simple extensions Sunday, March 4, 2018 11:29 PM Theorem Suppose E/F is a finite field extension. Then there are only finitely many intermediate fields FCKCE if and only if JOEE s.t. E=FIOJ (in this case θ is called a primitive element, and $\equiv_{f_{\pm}}$ is called a simple extension.) Corollary. If E_{\mp} is a finite separable extension, then $E = F[\theta]$ for some $\theta \in E$. 12. It is an immediate consequence of the previous theorem and corollary. implies E = FI0J. Now suppose $|F| = \infty$. Since $E = FI\alpha_1, \dots, \alpha_m$, it is enough to show: for any a, BEE, Fla, BJ/F is a simple extension. Since there are only finitely many intermediate subfields and $|F| = \infty, \exists c \neq c' \in F \quad s.t \in F[\alpha + c\beta] = F[\alpha + c'\beta]. Hence$ $F[\alpha+c\beta] \ni (\alpha+c\beta) - (\alpha+c'\beta) = (c-c')\beta; \text{ and so } \beta, \alpha \in F[\alpha+c\beta].$

Lecture 28: Simple extensions
Sunday, March 4, 2018 1145 PM
And so FIG, BJ
$$\subseteq$$
 FIGHCBJ: As CeF, we get $FIG, PJ = FIGHCPJ$:
(=) Suppose E=FIBI and $F \subseteq K \subseteq E$. Then $m_{\Theta, K}(\infty) [m_{\Theta, F}(x)$.
So there are only finitely many possiblity for the polynomial
 $g(\infty) := m_{\Theta, K}(\infty \in EIXI)$.
Let K' be the field generated by F and coeff. of $g(\infty)$. Hence
 $F \subseteq K' \subseteq K$, $g(\infty) \in K' [XI]$ is irreducible, and $g(\Theta) = 0$. Therefore
 $m_{K',\Theta}(\infty) = g(\infty)$; this implies $[E:K'] = [K'E\Theta]:K'] = deg g$
 $= [KI\Theta]:K] = DE:K]$.
and so $K = K'$. Therefore, there are only finitely many possiblities
for K .
So now we have extra motivation to study separability condition.
Since any algebraic extension E/F can be realized as a subfield
of an algebraic closure F of F, when F/F is separable. So next we
cuill find exactly othen F/F is a separable. So next cue
cuill find exactly othen F/F is a separable (and so Galoris) extension.

Lecture 28: Separability condition
Monday, March 5, 2013 12:04 AM
Recall that are have seen that the minimal polynomial of
$$t^{4/4}$$
 over
 $\overline{t_{p}(t)}$ is $\chi^2 - t$, and it is NOT separable. So $\overline{T_{p}(t)}/\overline{t_{p}(t)}$
is NOT separable.
 $\overline{F/F}$ is not separable $\leftrightarrow \exists eve \overline{F}$ st. $m_{\chi_1 \overline{F}}$ (on hos multiple roots
in \overline{F} .
So are need to study the possibility of an irreducible polynomial
 $prove \overline{FDXJ}$ having multiple roots.
Lemma. (1) zeros of from in \overline{F} are distinct \Rightarrow $gcd(f, f') = 1$.
(2) Suppose $fox_1 \in \overline{FDXJ}$ is irreducible. Then
 $fox = g(\chi^{P^n})$ such that $gox_2 \in \overline{FDXJ}$ is an irreducible
separable polynomial.
 \overline{F} . We have already mentioned that because of the uniqueness of quatient
and remainder are have: E/F field extension $g \Rightarrow P_1(0) Bon \Rightarrow B_1(0) P_1(0)$
 $T_1(\infty), T_2(0) \in \overline{FDXJ}$ in \overline{FDXJ} in \overline{FDXJ} .
 $h_1(\infty), f_2(0) \in \overline{FDXJ}$ is in \overline{FDXJ} in \overline{FDXJ} .
In \overline{FDXJ} , $f(x) = \prod_{i=1}^{m} (x - \alpha_i)^{n_i}$ where $\alpha_i \neq \alpha_j$. Then

Lecture 28: Separability condition
Pharady, March 8, 2018 20.43 PM

$$f'(x) = \prod_{i=1}^{m} (x - \alpha_i)^{n-1} (\sum_{i=1}^{m} n, \prod_{i=1}^{m} (x - \alpha_i))$$

Notice $p(\alpha_i) = n; \prod_{j=1}^{m} (\alpha_i - \alpha_j) \neq 0$. Hence $(x - \alpha_i) \neq p(x)$.
 $\prod_{i=1}^{j=1} (x - \alpha_i) \neq 0$. Hence $(x - \alpha_i) \neq p(x)$.
Therefore $gd(f(x), p(x)) = 1$; this implies
 $gcd(f(x), f'(x)) = 1 \Leftrightarrow f$ has no multiple zeros.
(2) If f(x) is separable, there is nothing to prove. If not,
 $gcd(f(x), f'(x)) \neq 1$. As for is irreducible and $do_i f \leq deoif$,
 $we deduce that f'=0$. Suppose $f(x) = \sum_{i=0}^{m} a_i x^i$. So
 $f(x) = \sum_{i=0}^{m} i a_i x^{i-1} = 0$ implies $ia_i = 0$ for $0 \le i \le n$.
If $char(F) = 0$, then $a_i = \dots = a_n = 0$; this implies for is
a unit, which is a contradiction. For $char(F) = p > 0$, we
proceed by induction on deg f. By \bigotimes , either plift or $a_i = 0$. Hence
 $f(x) = \sum_{i=0}^{m} a_{i-1} x^{i-1} = g(x^2)$, for some $g_i(x) \in F(x)$.
Claim $g_i(x)$ is irreducible in Fixe.

Lecture 28: When is algebraic closure Galois?
Thurday, March 8, 2018 10:58 PM

$$pf \cdot d \cdot claim.$$
 If not, $g_{\pm}(x_1 = p(x_1)h(x_2)$, and $\deg p, \deg h \ge 1$.
 $\Rightarrow f(x) = g_{\pm}(x_1^{p}) = p(x_1^{p})h(x_1^{p})$ which contradicts irreducid.
of f .
Therefore by the induction hypothesis, $g_{\pm}(x_1) = g(x_1^{pk})$ for
some irreducible separable polynomial $g(x_1) \in Fix_1$. Therefore
 $f(x) = g_{\pm}(x_1^{p}) = g(x_1^{pk+1})$; and claim follows.
Theorem. The following are equivalent.
(a) Either char(F)=0, or char(F)=p>0 and $F^{p}=F$.
(b) $F/_{\mp}$ is Galois.
(c) Any algebraic extension $E/_{\mp}$ is separable.
 $ff. (a) \Rightarrow (b)$ Since $F/_{\mp}$ is normal, it is enough to show $F/_{\mp}$
is separable. Let we F. Then $\exists g(x) \in Fix_1$: separable and
irreducible such that $m_{a, \mp}(x) = g_{\pm}(x_1)$ any $p(y)$ is separable.
Suppose $g_{\pm}(x) = \sum_{i=0}^{m} a_i x^i$. Since $F^{i}=F$, by induction $F^{i}=F$.
Hence $a_i = b_i^{pk}$ for some $b_i \in F$. Thus $g(x^{k}) = (\sum_{i=0}^{m} b_i x^i) = m_{a, \mp}^{pk}$

Lecture 28: Perfect fields Thursday, March 8, 2018 11:14 PM Since matter is irred. in FIXI, we deduce that pk=1. And so m(x) = g(x) is separable. (b) ⇒ (c) ∃ v: E c F st. v| = id. F. Since F is separable, E/I is separable. (c) \Rightarrow (a) For c \in F, let E be the splitting field of x^{-c} and we E be a zero of x-c. Then c=x ; and so $\chi^{P}-c=(\chi-\alpha)^{r}$. Hence $m_{\chi,\mp}(\chi) | (\chi-\alpha)^{P}$. As $E/_{\mp}$ is separable, $m_{x, \pm}(x)$ does not have multiple zeros. Hence $m_{x, \pm}(x) = x - x$; this implies $x \in F \implies c \in F'$. (If char F = o, then there is nothing to prove.) Def We say F is a perfect field if F/F is Galois. Corollary. Suppose F is a perfect field, and E/F is a finite extension. Then $\exists \theta \in E$, $E = F[\theta]$.