Lecture 27: Fixed field of a group
Tuesday, March 6, 2018 200 PM
Proposition. Let G be a subgp of Ant (E). Then
(1) Fix (G) is a subfield of E.
(2) If
$$IGI_{<\infty}$$
, then $[E: Fix (G)] \leq IGI$.
Pf. (1) is easy.
(2) Let $G = g_{\sigma'_1}, ..., \sigma_n^2$ and $F := Fix (G)$. It is enough to show any
n+1 elements $\alpha_1, ..., \alpha_{n+1}$ of E are F- linearly dependent.
Let $V := g(c_1, ..., c_{n+1}) \in E^{n+1} [\sum_{i=1}^{n+1} c_i (\sigma_1(\alpha_i), ..., \sigma_n(\alpha_i)) = \sigma_s^2$.
Then (1) V is an E-subspace of E^{n+1} ; (it is the right kernel
of $[\sigma_1(\alpha_1) \cdots \sigma_n(\alpha_n)]$
(1) $V \neq 0$; (any n+1 vectors in E^n are E-linearly dependent).
(2) $V \neq 0$; (any n+1 vectors in E^n are E-linearly depend)
(3) $\sigma \in G$, $(c_1, ..., c_{n+1}) \in V^{-\frac{1}{2}}$ ($\sigma'(c_1), ..., \sigma(c_{n-1})) \in V$.
 $e = \sum c_i (\sigma_1(\alpha_i), ..., \sigma_n(\alpha_n)) \Rightarrow o = \sum \sigma(c_i) (\sigma \circ \sigma_1(\alpha_1), ..., \sigma_n'(\alpha_n))$
Since $(\sigma \circ \sigma_1, ..., \sigma_n \circ \sigma_n)$ is a permutation of $\sigma_1, ..., \sigma_n'$, are deduce $o = \sum \sigma'(c_i) (\sigma_1(\alpha_i), ..., \sigma_n'(\alpha_n))$. Hence

Lecture 27: Galois extensions Sunday, March 4, 2018 2:16 PM $(\sigma c c_1), \dots, \sigma c c_{n+1}) \in \mathbb{V}.$ And so by the previous lemma VG = 0; this means $\exists (c_1, ..., c_{n+1}) \in (\mathbb{F}^{n+1} \cap \nabla) \setminus \{o\}, \text{ which implies } c_1 \alpha_1 + \cdots + c_{n+1} \alpha_{n+1} = o;$ and a 's are F-linearly dependent. Theorem. Let G be a finite subgp of Aut (E), where E is a field. Let F = Fix(G). Then E_{+} is a Galois extension, [E:F] = |G|, and Aut(E/F) = G. $\frac{Pf}{P} \quad \forall \alpha \in E, \text{ consider } f(x) := \Pi(x - \sigma(\alpha)). \text{ Then } \forall \sigma \in G,$ or(f) = f. And so fixe F[x]. Therefore my (m) from; this implies all other zeros of $m_{x,F}(x)$ are in E. Hence E/F is a normal extension. Therefore $|Aut(E/F)| \leq EE:F]$. previous proposition. z Clearly $G \subseteq Aut(E/F)$. Thus IGI S |Aut (E/F) SLE: EI = LE: FIX CAJ S ICI Hence (1) G = Aut (E/F) (2) $|Aut(E/_{F})| = IE:FJ, which implies E/_{F}$ is Galois.

Lecture 27: Fundamental theorem of Galois theory
Sunday, March 4, 2018 9:42 PM
Corollary Suppose
$$E/_{F}$$
 is a functe Galois extension. Then
Tix (Aut $(E/_{F})$) = F.
Prix (Aut $(E/_{F})$). Then $F \subseteq F'$ and $IE:F'] = [Aut (E/_{F})]$
And so $F = F'$.
So far are have proved:
Theorem. Suppose $E/_{F}$ is a finite extension. Then the following
are equivalent: (1) E is a splitting field of a separable polynomial over F
(2) $E/_{F}$ is a normal and separable extension.
(3) $IAut(E/_{F})I = IE:FI$.
(4) $Fix(Aut(E/_{F})) = F$.
Proposition. Suppose $E/_{F}$ is Galois, and $F \subseteq K \subseteq E$ is a subfield.
Then $E/_{K}$ is Galois.
(4) F_{K} is Galois.
(5) $IAut(E/_{F})I = F$.
Proposition. Suppose $E/_{F}$ is Galois, and $F \subseteq K \subseteq E$ is a subfield.
Then $E/_{K}$ is Galois.
(4) F_{K} is Galois.
(5) $IAut(E/_{F})I = F$.
Proposition. Suppose $E/_{F}$ is Galois, and $F \subseteq K \subseteq E$ is a subfield.
Then $E/_{K}$ is Galois.
(5) $IAut(F) = IE:FI$.
(6) F_{K} is Galois.
(7) $IM_{K,F}(X)$ and $E/_{F}$ is separable, $M_{K,K}$ does
not multiple zeros. So $E/_{K}$ is separable.
.
. Since $E/_{F}$ is normal, all the zeros of $M_{K,F}$ are in E ;

Lecture 27: Fundamental theorem of Galois theory Sunday, March 4, 2018 11:13 PM . As K/I and E/I are normal, restriction gives us an onto group homomorphism Aut (E/F) -> Aut (K/F) ∝ ⊢→ ∽|_K; and clearly kornel of this map is Aut (E/K). Hence Ant $(E/K) \triangleleft Ant(E/F)$ and $Ant(K/F) \simeq Ant(E/E)/Ant(E/K)$. Now suppose NA Aut(E_{F}); and let K := Fix(N). To show K_{+} is normal, it is enough to show for any or $Aut(E_{+})$ o(K) SK. So for ack and TEN we have to show $\mathcal{T}(\sigma(\alpha)) \stackrel{?}{=} \sigma(\alpha)$ in Fix(N) $\mathcal{T}(\sigma(\alpha)) = \sigma(\sigma^{-1} \mathcal{T} \sigma(\alpha)) = \sigma(\alpha).$ as N \triangleleft Aut ($\Xi/_{\rm F}$)