Lecture 26: Automorphisms of normal extensions

Tuesday, March 6, 2018 1:

In the previous lectures we proved:

- ① any embedding of $E \rightarrow F$ can be extended to an automor. of F where $F \subseteq E \subseteq F$.
- 2) The following are equivalent:
 - (a) $\forall \sigma \in Aut(\overline{F}/_{\overline{F}})$, $\sigma(E) = E$.
 - (b) $\forall \alpha \in \Xi$, $\exists \alpha_i \in \Xi$, $m_{\alpha_i \mp}(x) = \prod (x \alpha_i)$
 - (c) E is a splitting field of a non-empty subset FCFIXI)F.
 - (d) 且 {E, {i, ret.

Q-1) E; is a splitting field of firm over F (Ei SF).

(d-2) Yij, 3k, E, DE; UEj,

(43) $\Xi = \bigcup_{i \in I} E_i$

(E/F is called a normal extension if the above statements hold.)

Remark. (d-3) implies a finite extension E_f is normal \Leftrightarrow E is a splitting field of f(x) over F.

Lecture 26: Automorphisms of normal extensions

Saturday, March 3, 2018

3 11:00 AM

Cor. Suppose $F \subseteq E_1 \subseteq E_2 \subseteq \overline{F}$ is a tower of fields.

Suppose $E_{1/\mp}$ and $E_{2/\mp}$ are normal extensions. Then

given by restrictions are well-defined group homomorphisms.

2 Aut
$$(\overline{F}_{/F})$$
 \longrightarrow $\mathcal{E}_{(F)} \in \prod_{E/F} \text{Aut}(E/F) \mid \Phi_{E_2} \mid = \Phi_{E_1} \mathcal{E}_{E_1}$

E: finite hormal $E_{(F)}$: finite, $E_{(F)}$: finite, $E_{(F)}$: $E_{($

is an isomorphism.

 $\frac{\mathbb{P}^{2}}{\mathbb{P}^{2}}$. \mathbb{P}^{2} Since $\mathbb{E}_{i/F}$ are normal, \mathbb{V} \mathbb{P}_{F} Aut $(\overline{\mathbb{F}}_{F})$, \mathbb{P}_{F} ;

And so +| ∈ Aut (Ei/+).

For any $\theta \in Aut(E_{i/F})$, $\exists \theta : F \xrightarrow{F} F$ s.t. $\theta|_{E_{i}} = \theta \cdot And$

so the restriction map is onto.

Since clearly $r = r \circ r$ and $r \in S$ onto, we get that

 r_{E_2/E_1} is onto.

② By part ① we get that $\phi \mapsto (\phi|_{E})$ is a well-defined group

homomorphism. Since $\overline{F} = \bigcup_{E/F \text{ finite, normal } E, \text{ are get that } \phi \mapsto (\phi|_{E})$

Lecture 26: Inverse limit

Saturday, March 3, 2018 11:16 PM

is injective.

Suppose $(\varphi_E) \in \prod Aut(E/F)$ and $\forall E_1 \subseteq E_2 \subseteq \overline{F}$, $\varphi_{E_2} = \varphi_{E_1}$; E/F : finite E/F : finite

we know that F = U E ; we "glue" PEs:

E/F finite normal

 $\phi: \overline{+} \rightarrow \overline{+}, \quad \phi(\alpha) = \phi_{E}(\alpha) \quad \text{if } \alpha \in E.$

Since of s are compatible, of is well-defined. One can easily check

that $\phi \in Aut(\overline{F}_{/F})$; And the claim follows.

Def. The group given in RHS of part 2 is called the inverse limit

of Aut (E/F) 's; and it is denoted by lim Aut (E/F)

E/F: finite

roomal

So we proved $\operatorname{Aut}(\overline{F}_{/\mp}) \simeq \lim_{\longrightarrow} \operatorname{Aut}(\overline{E}_{/\mp})$.

finite normal

Moreover the above proof implies:

Theorem. Suppose $F \subseteq E_1 \subseteq E_2 \subseteq F$, and $E_{i/F}$ are normal.

Then $\operatorname{Aut}(\mathbb{F}_{2/\mathbb{F}_{1}}) \preceq \operatorname{Aut}(\mathbb{F}_{2/\mathbb{F}})$ and

 $\operatorname{Aut}(E_{2/F})/\operatorname{Aut}(E_{2/E_{1}}) \simeq \operatorname{Aut}(E_{1/F})$.

Lecture 26: Topology on group of Automorphisms of

normal extensions

Lecture 26: Automorphisms of finite normal extensions

Saturday, March 3, 2018

11:52 PM

Theorem. Let $o: F \xrightarrow{\sim} F'$, and $f(x) = \prod_{i=1}^{m} f_i(x)$, where $f_i(x)$

are distinct irreducible elements of FIXI. Let E be a splitting field of

frx over F, and E' be a splitting field of orcf) (x) over F'. Then

 $| \{ \hat{\sigma} : E \xrightarrow{\sim} E' | \hat{\sigma} |_{F} = \sigma \} | \leq [E:F]$. Moreover equality holds,

if I do not have multiple zeros.

 $\frac{PF}{E}$. We proceed by induction on E:FI. If all the irred. factors of f are of degree f, then f and f and f and f are of degree f, then f and f and f and f are equality holds.

Now suppose f(x) is an irredu. factor of f(x) that has degree ≥ 2 ; and suppose α is a zero of $f_1(x)$. Then for any $\delta: E \xrightarrow{\sim} E'$, $\delta(\alpha)$ is a zero of $\sigma(f_1)(x)$.

Hence \Im_{Fix} has at most # of distinct zeros of $O'(f_1)$ possibilities. For any given such possibilities, by the strong induction hypoth. There are at most [E:Fix]—many possibil. of extension to an isomorphism from E to E'. So

Lecture 26: Automorphisms of finite normal extensions

Sunday, March 4, 2018 12:13 Al

 $| \{ \delta' : E \xrightarrow{\sim} E' | \delta' |_{F} = \sigma \} | \leq (\# \text{ of distinct zeros of } f_{\perp}) |$

[[x]]

 $= [F_{I} : F] [E_{I} : F_{I} : F_{I}] = [E_{I} : F_{I} : F_{I}].$

Suppose f has no multiple zeros. Then f_1 does not have multiple

zeros, and fremains square-free over FIXIIXI as it is square-free

over FIXI. And so by the strong induction hypothesis equality in the

above inequal hold.

On the other hand, if equality holds, then all zeros of f_1 are

distinct. By a similar argument, all zeros of f; are distinct. Since

ged (fi, fj)=1 for i = j, we deduce that all zeros of f are

distinct; and the claim follows.

Det. A polynomial f(x) & FIXI \F is called separable if its

irreducible factors do not have multiple roots.

Corollary. Suppose $f(x) \in F[x] \setminus F$, and E is a splitting field of f(x) over F. Then $\left| \text{Aut}(E/F) \right| \leq [E:F] \cdot \text{And}$ equality holds exactly when f(x) is separable.

Lecture 26: Separable extensions

Saturday, March 3, 2018

11:27 PM

Def. An algebraic extension E_{f} is called separable if $\forall \alpha \in E$ $m_{\alpha, f}(x)$ is separable.

Ex. $f_p(t^{1/p})/f_p(t)$ is NOT a separable extension. By Eisenestein's criterion x^p-t is irreducible in f(t), and so $f_p(x)=x^p-t$.

But $x^2 - t = (x - t^{\frac{1}{p}})^p$ has multiple zeros.

Another corollary of the previous argument is the following:

Theorem. Suppose E/T is a finite extension. Then the following statements are equivalent:

- (1) E is a splitting field of a separable polynomial fox) over F.
- (2) | Aut(E/+) | = [E:F]
- (3) E/F is a normal separable extension.

 $\underline{\mathcal{P}}$. We have already proved (1) \Longrightarrow (2);

Next we show (2) \Rightarrow (3). $\forall \alpha \in E$, as in the proof of previous theorem

 $|Aut(E/F)| \leq (\# \text{ af distinct zeros of } m_{x,F} \text{ in } E) [E:F[x]]$

Lecture 26: Galois extensions

Sunday, March 4, 2018 1:21 PM

And so |Aut(E/F) | < (* of districtions of main E) [E: Flat]

< deg m. · [E:FIN] = [FIN]:F][E:FIN]]

 $= [E:F[\omega]].$ (*)

Since by (2) equality holds, # of dist. zeros of ma in E = deg ma

And so all zeros are in E and are distinct == ## is normal & separable.

(3) = (1) Since E/F is finite, $\exists \alpha_1, ..., \alpha_n \in E$ sit. $E = F(\alpha_1, ..., \alpha_n)$.

Since E/F is (algebraic) normal, all zeros of m, (x) are in E.

And so E is a splitting field of II m (x) over F. Smae

E/F is separable, $\prod_{i=1}^{n} m_{a_{i}}(\infty)$ is a separable polynomial.

Def. An algebraic extension E/F is called a Galois extension if E/F is a normal and separable extension. If E/F is Galois, we write Gal(E/F) instead of Aut(E/F).

So far we have seen that $G_{al}(F/_{E})$ gives us [F:E] if $F/_{E}$ is

a Galois extension. Next we will show having Gal(F/E) as a

subgroup of Aut (F) uniquely determines E. The following is the

key technical lemma:

Lecture 26: Non-zero set of fixed points

Sunday, March 4, 2018 9:49 P

<u>Lemma</u>. Let G be a finite subgroup of Aut (E).

Suppose $0 \neq V \subseteq E^n$ is an E_n subspace, and for any $o \in G_n$

and $(e_1,...,e_n) \in V$, we have $(\sigma(e_1),...,\sigma(e_n)) \in V$.

Then $V^G := \{(f_1,...,f_n) \mid \forall \sigma \in G, \sigma(f_i) = f_i\} \neq 0$.

PP. Among all elements of V, take a non-zero vector with smallest

possible non-zero components; say (x,, ,, ,, o,, o) eV is such

an element and a; 's are not zero. Hence (1, x'2, ..., x', 0, -...) EV.

 $\Rightarrow \forall \sigma \in G$, $(1, \sigma(\alpha_2'), ..., \sigma(\alpha_1'), 0, ..., 0) \in V$

 \Rightarrow $(0, \alpha_2' - \sigma(\alpha_2'), ..., \alpha_r' - \sigma(\alpha_r'), 0, ..., 0) \in \mathbb{V}$

Since these vectors have only at most r-1 non-zero components,

they should be zero. Hence (1, 2/, ..., 2, 0, ..., 0) e VG.