Lecture 25: Uniqueness of algebraic closure Friday, March 2, 2018 12:39 PM We were proving the following: Theorem. Let F be a field, and E, E'be two algebraic closures of F. Suppose $\sigma: F \rightarrow E'$ is an embedding. Then $\exists \sigma: E \rightarrow E'$, s.t. $\left. \begin{array}{c} \left. \begin{array}{c} \left. \begin{array}{c} \left. \begin{array}{c} \left. \end{array}\right. \right) \right| \right| = \left. \begin{array}{c} \left. \begin{array}{c} \left. \end{array}\right. \right) \right| \\ \left. \begin{array}{c} \left. \end{array}\right| = \left. \begin{array}{c} \left. \begin{array}{c} \left. \end{array}\right. \right) \right| \\ \left. \begin{array}{c} \left. \end{array}\right| = \left. \begin{array}{c} \left. \begin{array}{c} \left. \end{array}\right. \right) \right| \\ \left. \begin{array}{c} \left. \end{array}\right| = \left. \begin{array}{c} \left. \begin{array}{c} \left. \end{array}\right. \right) \right| \\ \left. \begin{array}{c} \left. \end{array}\right| = \left. \begin{array}{c} \left. \end{array}\right| \\ \left. \end{array}\right| \\ \left. \begin{array}{c} \left. \end{array}\right| = \left. \begin{array}{c} \left. \end{array}\right| \\ \left. \end{array}\right| \\ \left. \begin{array}{c} \left. \end{array}\right| = \left. \begin{array}{c} \left. \end{array}\right| \\ \left. \end{array}\right| \\ \left. \begin{array}{c} \left. \end{array}\right| = \left. \begin{array}{c} \left. \\ \left. \end{array}\right| \\ \left. \end{array}\right| \\ \left. \left. \right| \\ \left. \right| \right| \\ \left. \right$ FCKSE, We considered the set $\sum := \xi(K, \sigma) | \sigma: K \subset E'$ s.t. ξ Using Zorn's lemma, we proved I has a maximal element. Say (K, σ) is a maximal element of Σ . Then we claimed: .K=E. Pf. If not, I a E K. Let m (x) = FIXI be the minimal polynomial of a over F. Since E is algebraically closed, $\exists \alpha = \alpha_{\sigma}, \alpha_{1}, ..., \alpha_{m-1} \in E$ st. $m_{\alpha}(x) = (x - \alpha)(x - \alpha_1) \cdots (x - \alpha_{m-1})$. And so KIa, $\alpha_1, \dots, \alpha_{m-1}$ is the splitting field of m. (x) over K. Thus, by part (1), $\exists \widetilde{O}: K[\alpha, \alpha_1, \dots, \alpha_{m-1}] \subset \mathbf{E}', \widetilde{O}|_{\mathbf{K}} = \mathbf{O}'. \text{ Hence}$ $(K, \sigma) \prec (K I \alpha, ..., \alpha_{m-1} J, \mathcal{E})$, which is a contradiction.

Lecture 25: Uniqueness of algebraic closure
Thursday, March 1, 2018 10:33 PM
Claim.
$$\sigma: E \hookrightarrow E'$$
 is anto.
PF Let K':= $\sigma(E)$; and $\theta: K' \longrightarrow E$, $\theta(a) = \sigma^{-1}(a')$.
Suppose $E'_{\neq} K'$; and let $a' \in E \land K'$. As before, there is a
subfield L' of E' which is the splitting field of the minimal
poly. $m_{a'}(x)$ of $a' over K'$. Then, by part (3), $\exists \vartheta: L' \hookrightarrow E$
st. $\vartheta|_{K'} = \theta$. This implies $\vartheta(a') \in E = \theta(K') = \vartheta(K')$
which implies ϑ is not injective; and this is a contradiction. **a**
A lot of mathematics is about understanding symmetries of an
algebraic closure \overline{F} of \overline{F} .
Def. Let E/F be a field extension. Then
Aut $(E/F) := \frac{2}{5} \circ : E \cong E | \circ|_{\overline{F}} = id \cdot \frac{2}{5} \cdot \frac{1}{5}$
Let's start with $\sigma \in Aut(\overline{F}/F)$, and assume $F \subseteq E \subseteq \overline{F}$ is
a subfield. Then $\circ|_{\overline{E}}$ gives us an embedding of E into \overline{F} .
 \overline{Q} Cohet can are say about $\sigma(E)$? Under cohat conditions
 $\sigma(E) = E$?

Lecture 25: Algebraic elements under an embedding Friday, March 2, 2018 8:35 AM The following is the key observation: Lemma. Let \overline{F} be an algebraic closure of \overline{F} , $\sigma \in Aut(\overline{F}_{F})$, and $x \in \overline{F}$. If f(x) = 0 for some $f(x) \in \overline{F}(x)$, then $f(\sigma(x)) = 0$. (And so or permutes zeros of any polynomial fix) = FIXINF.) Pf is clear. Lemma. Suppose \overline{F} is an algebraic closure of \overline{F} , and $\overline{E} \subseteq \overline{F}$ is a splitting field of foxie FIXINF. Then for any ore Aut $(\overline{F}_{/F})$, $\sigma(E) = E$. <u>PF.</u> By definition, $E = F(\alpha_1, ..., \alpha_n)$ and $f(x) = c(x - \alpha_1) \cdots (x - \alpha_n)$ for some a, ..., an EF. By the previous lemma or induces a permutation on $3_{\alpha_1}, ..., \alpha_n 3$. Hence $\sigma(E) = F(\sigma(\alpha_1), ..., \sigma(\alpha_n))$ $= F(\alpha_1, ..., \alpha_n)$ In order to get a kind of converse statement, we need the following definition: <u>Def</u>. Let $F \subseteq F[x] \setminus F$ be a set consisting of menic polynomials.

Lecture 25: Normal extensions
Thursday, March 1, 2018 10.1 PM
We say E is a splitting field of F over F if
(1)
$$\forall f \in \mathcal{F}$$
, $\exists \alpha_{i,f} \in E$ st. $fr \gg = \prod (x - \alpha_{i,f})$
(2) E is generated by F and $\alpha_{i,f}$'s as a field.
Theorem. Let F be a field, F be an algebraic closure of F, and F $\subseteq E \subseteq F$
be a subfield. Then the following statements are equivalent:
(a) $\forall \sigma \in Aut(F_{f})$, $\sigma(E) = E$.
(b) $\forall \alpha \in E$, $\exists \alpha_{1}, ..., \alpha_{n} \in E$ st. $m_{\alpha_{i,F}}(m) = (x - \alpha)(x - \alpha_{i}) ... (x - \alpha_{n-1})$.
(c) E is a splitting field of a set $\Im \subseteq FIXIIF$ of monic polynomials.
(d) There are $F \subseteq E_{i} \subseteq F$ st.
(i) E; is a splitting field of fight $FIXIIF$.
(i) $rarticular$, $IE_{i}:FII < \infty$).
(a) $\forall i,j, \exists k$ st. $E_{i} \cup E_{j} \subseteq E_{k}$.
(b) $\exists e = \bigcup E_{i}$
(c) $E = UE_{i}$
(c) $E = UE_{i}$
(d) $F = \bigcup E_{i}$
(e) $F = i \le T$
(f) $i \in I$ $i \le T$ for $i \in F$, $\Theta(x) = \alpha'$. Then by the previous
theorem $\exists \vartheta \in Aut(F_{i}F_{i}), \vartheta|_{FEI} = \theta$. Since $\vartheta(E) = E$, we deduce
that $\vartheta(\alpha) = \Theta(\alpha) = \alpha' \in E$; and the claim follows.

Lecture 25: Normal extensions
Sturdy, March 3, 2018 10:43 AM
(b)
$$\Rightarrow$$
 (c). Let $F:= g_{m_{x_i}}(\infty) | x \in Eg$. Then E is a splitting
field of F over F , by definition.
(c) \Rightarrow (d). Let I be the set of all the finite subsets of F .
And, for any ieI, let $f_i(\infty) = \prod_{P \in i} p(\infty)$. Let E_i be the
splitting field of $f_i(\infty)$ over F . Then, $E_i \subseteq E$; and for
any i, j , if $k = i \cup j$, then $E_k \supseteq E_i \cup E_j$. Using this
one can check that $\bigcup_{i \in I} E_i$ is a field. Since E is generated
by zeros of foxe F , we get $E \subseteq \bigcup_{i \in I} E_i$. And so
 $E = \bigcup_{i \in I} E_i$.
(d) \Rightarrow (a) For any $\sigma \in Aut(F/F)$, we have seen that $\sigma(E_i) = E_i$.
Therefore $\sigma(E) = \sigma(\bigcup_{i \in I} E_i) = \bigcup_{i \in I} \sigma(E_i) = \bigcup_{i \in I} E_i = E \cdot j$
and $\bigcup_{i \in I}$ is a field.
Def. We say an extension E/F is a normal extension if
 $E \subseteq F$ (algebraic) and the statements of the previous
theorem hold.