Lecture 21: Tensor product of algebras
Wednesday, February 21, 2018 851 AM
In the previous lecture we mentioned that A8 B is an R-algebra
If A and B are R-algebra. The following is instrumental in
understanding the R-algebra structure of many tensor products.
Proposition. Suppose R and S are unital commutative rings, and

$$\Rightarrow: S \rightarrow R$$
 is a unital ring homomorphism. Let I be an ideal of
the ring SIXI of polynomials over S. Then
 $R \circ_S SIXI/I \simeq RIXI/_{R \neq II}$, (*)
 $r \circ ((\sum_{i=0}^{m} s_i x^i) + I) \mapsto r \sum_{i=0}^{m} \phi(s_i) x^i + R \phi(I)$.
 $\frac{R!}{r \circ Six} = notice that ϕ can be extended to a unital ring
homomorphism $\phi: SIXI \rightarrow RIXI, \phi(\Sigma s_i x^i) := \Sigma \phi(s_i) x^i$.
 $\cdot Showing (\omega) as R-modules.$
Let $f: Rx SIXI/I \rightarrow RIXI/_{R \neq (I)}$, $f(r, pos+I):= r \phi(p(s)) + R \Rightarrow (I)$.
 $q(I) = dditive subgr J$
 $\cdot P(x)+I = P(x) + I \Rightarrow P(x) - P(x) = r \phi(p) - r \Rightarrow (q_2) \in R \Rightarrow (I)/$$

Lecture 21: Tensor product of algebras
Treader, February 20, 2013 12:08 MM
• S-balanced.
$$f(r.s, pron+I) = f(r \neq cs), pron+I)$$

= $r \neq cs$ $p \neq cpron + R \neq (I) = r \Rightarrow (s pron) + R \Rightarrow (I)$
= $f(r, s (pron+I))$.
• Linearity conditions are easy to check.
So \exists an R-module homomorphism $\vartheta: R \circledast_S SIX/_I \longrightarrow RIXI_{I}$,
 $R \neq co$
such that $\vartheta(r \circledast pron+I) = r \Rightarrow (pron) + R \Rightarrow (I)$.
• Let $\tilde{X}: RIXI \longrightarrow R \circledast_S SIXI/_I, \tilde{\mathcal{T}} (\sum_{i=\sigma}^{m} r_i \approx \langle x^i + I \rangle)$.
Claim 1. $\tilde{\mathcal{T}}$ is an R-mod. homomorphism. \checkmark
Claim 2. $\varphi(I) \subseteq \ker(\tilde{\mathcal{T}})$
 $\frac{\mathcal{T}}{I=\sigma} \frac{d}{clain}$. Suppose $\sum_{i=\sigma}^{m} f(s_i) x^i \in I$. Then
 $\tilde{\mathcal{T}} (\Rightarrow (\sum_{i=\sigma}^{m} s_i x^i)) = \tilde{\mathcal{T}} (\sum_{i=\sigma}^{m} f(s_i) \approx \langle x^i + I \rangle)$
 $= \int_{i=\sigma}^{m} (1 \cdot s_i) \otimes \langle x^i + I \rangle = \sigma$.
Hence $\exists \pi: RIXI/_{R \Rightarrow (I)} \longrightarrow R \circledast_S SIX/_{I} \checkmark$
 $\tilde{\mathcal{T}} : R-mod. hom j and $\pi(Z \ge r_i x^i + R \Rightarrow (I)) = \sum r_i \circledast \langle x^i + I \rangle$
Therefore ϑ and π are inverse of each other.$

Lecture 21: Tensor product of algebras Sunday, February 25, 2018 11:21 PM So we have that O is an R-mod. isomorphism. To show O is an R-algebra isomorphism it is enough to show $\Theta((r_{1} \otimes \overline{P_{1}(x)})(r_{2} \otimes \overline{P_{2}(x)})) = \Theta(r_{1} \otimes \overline{P_{1}(x)}) \Theta(r_{2} \otimes \overline{P_{2}(x)}) \text{ (shy ?)}$ $\begin{array}{c} \Theta(\mathbf{r}_{1}\mathbf{r}_{2} \otimes \overline{\mathbf{P}_{1}(\mathbf{M})\mathbf{P}_{2}(\mathbf{K})}) \\ \| \\ \| \\ \| \\ \end{array}$ $r_{1}r_{2}p_{1}(x)p_{2}(x) + R + CI) = r_{1}r_{2}p_{1}(x)p_{2}(x) + R + CI).$ E $\frac{E_{X}}{Q} = \frac{Q[x]}{Q} = \frac{$ \simeq QIII [x]/ $\langle \chi^2 + 1 \rangle$ $\simeq Q[\dot{I}][X]/((x+\dot{I})(x-\dot{I}))$ ~ QII] 🕀 QIII. (as Q-algebras). (think about the reasoning behind each step.) $\underline{\mathbb{E}_{x}}_{\mathcal{P}\mathbb{Z}} \otimes_{\mathbb{Z}} \mathbb{Z} \text{ fil } \simeq (\mathbb{Z}_{\mathcal{P}\mathbb{Z}}) \otimes_{\mathbb{Z}} \mathbb{Z} \text{ fil } \langle x^2 + 1 \rangle$ $\simeq \left(\mathbb{Z}_{pZ}\right) [x_1/(x^2+1))$ (*) Case 1. p=2. $\chi^2+1=(\chi+1)^2$ in $(\mathbb{Z}_{2\mathbb{Z}})[\chi]$. So $(\mathcal{A}) \simeq (\mathbb{Z}_{2\mathbb{Z}}) \operatorname{IXI}_{\langle (\mathcal{X}+1)^2 \rangle} \simeq (\mathbb{Z}_{2\mathbb{Z}}) \operatorname{IyJ}_{\langle \mathcal{Y}^2 \rangle} \quad (\text{has nilpotent} \\ \text{element} \cdot)$

Lecture 21: Tensor product of two algebras Sunday, February 25, 2018 11:34 PM Case 2 · $\exists a_0 \in \mathbb{Z}/p_{\mathbb{Z}}$ s.t. $a_0^2 + 1 = 0$. Then $a_0 \neq -a_0$ (as $p \neq 2$). And so $x^2+1=(x-a_0)(x+a_0)$ and $gcd(x-a_0, x+a_0)=1$. Hence $(\mathbb{Z}/_{PZ})$ $[\times 1/_{\langle \chi^2+1 \rangle} \simeq (\mathbb{Z}/_{PZ})$ $[\times 1/_{\langle \chi-q_{\chi} \rangle} \oplus (\mathbb{Z}/_{PZ})$ $[\times 1/_{\langle \chi+q_{\chi} \rangle} \otimes \mathbb{Z}/_{\langle \chi+q_{\chi} \rangle})$ $\simeq (\mathbb{Z}/_{\mathbb{P}_{\mathbb{Z}}}) \oplus (\mathbb{Z}/_{\mathbb{P}_{\mathbb{Z}}}).$ Case 3. X+1 has no zero in Z/2. And so X+1 is irreducible in (Z/pz) IXI. Therefore \mathbb{Z}_{pZ} [X]/ \mathbb{Z}_{1} is a field of size p^2 . <u>Ex</u> $k [y] \otimes k [x] \simeq k [y, x]$.

Lecture 21: Introduction to field theory
Sunday, February 25, 2018 1248 PM
As we have indicated long ago, a lot of algebra has been developed
in order to understand zeros of polynomials. And of course the 4st
question is if a given polynomial has a zero:
(Bonghy) Suppose F is a field and
$$pcx) \in Fixi$$
. Can are find a field E
and $a \in E$ such that $p(a) = o$?
(More Is there a field extension $F \subseteq E$ and $a \in E$ such that
 $precises$) Is there a field extension $F \subseteq E$ and $a \in E$ such that
 $precises$.
(Bonghy) Suppose F $\subseteq E$ is a field extension. We say $a \in E$ is
 $algebraic over F$ if $p(a) = o$ for some $pcx) \in Fixi \setminus 20$.
Otherwise are say a is transcendental over F.
Theorem. Suppose $F \subseteq E$ is a field extension, and $a \in E$
is algebraic over F. Then
(d) II monic polynomial $m_a(x) \in Fixi \to m_a(x) \mid pcx) \Rightarrow p(a) = o$
for $pcx \in Fixi$.
(2) $m_a(x)$ is irreducible in $Fixi$.
(3) $F[a] := 2 \prod_{i=0}^{m} a_i a^{i} \mid a_i \in F_i^2 \cong Fixi / ; and so Fixi
is a field.
(4) $Fixi = 2 \prod_{i=0}^{m} a_i a^{i} \mid a_i \in F_i^2 \cong Fixi / ; and so Fixi
(is a field.
(f) $Fixi = 2 \prod_{i=0}^{m} a_i a^{i} \mid a_i \in F_i^2 \cong Fixi / ; and so Fixi
(g) $Fixi = 2 \prod_{i=0}^{m} a_i a^{i} \mid a_i \in F_i^2$ where $d_a = dxg m_a$; in particular
 $dim_F Fixi = dxg m_a$.$$$