Lecture 19: Tensor functor is right exact
Tuesday, February 20, 2018 10:23 AM
Theorem. Let M be an (S, R)-bimodule. Then
$-\otimes_{S} M:$ right $S-\bmod \rightarrow$ right R-mod is a right exact functor.
Pf. Previous lecture we proved that it is a functor. Now we have to show if $0 \rightarrow N_{1} \xrightarrow{f_{1}} N_{2} \xrightarrow{f_{2}} N_{3} \rightarrow 0$ is a S.E.S., then $N_{1} \otimes_{s} M \xrightarrow{f_{1} \otimes \text { id }} N_{2} \otimes_{s} M \xrightarrow{f_{2} \otimes \text { id }} N_{3} \otimes_{5} M \longrightarrow 0$ is exact.

- $\operatorname{lm}\left(f_{1} \otimes i d\right) \subseteq \operatorname{ker}\left(f_{2} \otimes i d.\right)$

We know $\left(f_{2}\right.$ id $) \cdot\left(f_{1} \otimes\right.$ id $)=\left(f_{2} \circ f_{1}\right)$ id $=0$; and the claim follows.

- So we get a right R-module hamamarphism

$$
\pi: N_{2} \otimes_{S} M /_{\operatorname{lm}\left(f_{1} \otimes i d\right)} \longrightarrow N_{3} \otimes_{S} M, \pi\left(\left[n_{2} \otimes m\right]\right):=f_{2}\left(n_{2}\right) \otimes m .
$$

. Let $\Psi: N_{3} \times M \rightarrow N_{2} \otimes M / \operatorname{lm}\left(f_{1} \otimes i d.\right), \Psi\left(n_{3}, m\right):=\left[n_{2} \otimes m\right]$ where $n_{2} \in N_{2}$ and $f_{2}\left(n_{2}\right)=n_{3}$.
Ψ is well-defined. $\quad f_{2}\left(n_{2}\right)=f_{2}\left(n_{2}^{\prime}\right) \Rightarrow n_{2}-n_{2}^{\prime} \in \operatorname{ker} f_{2}=\operatorname{lm} f_{1}$

$$
\begin{aligned}
& \Rightarrow \exists n_{1} \in N_{1}, \quad n_{2}-n_{2}^{\prime}=f_{1}\left(n_{1}\right) \\
& \Rightarrow n_{2} \otimes m=n_{2}^{\prime} \otimes m+\underbrace{f_{1}\left(n_{1}\right) \otimes m}_{\operatorname{lm}\left(f_{1} \otimes i d\right)} \Rightarrow\left[n_{2} \otimes m\right]=\left[n_{2}^{\prime} \otimes m\right] .
\end{aligned}
$$

S-balanced. $\psi\left(n_{3} \cdot s, m\right)=\left[n_{2} \cdot s \otimes m\right]=\left[n_{2} \otimes s \cdot m\right]=\Psi\left(n_{3}, s \cdot m\right)$

$$
f_{2}\left(n_{2}\right)=n_{3} \Rightarrow f_{2}\left(n_{2} \cdot s\right)=n_{3} \cdot s
$$

Lecture 19: Tensor functor is right exact; flat modules
linear in $N_{3}-\Psi\left(n_{3}-n_{3}^{\prime}, m\right)=\left[\left(n_{2}-n_{2}^{\prime}\right) \otimes m\right]=\left[n_{2} \otimes m\right]-\left[n_{2}^{\prime} \otimes m\right]$

$$
\left\{\begin{array}{l}
f_{2}\left(n_{2}\right)=n_{3} \\
f_{2}\left(n_{2}^{\prime}\right)=n_{3}^{\prime}
\end{array}\right\} \Rightarrow f\left(n_{2}-n_{2}^{\prime}\right)=n_{3}-n_{3}^{\prime}\left\{\begin{array}{l}
\psi\left(n_{3}, m\right)- \\
\psi\left(n_{3}^{\prime}, m\right)
\end{array}\right.
$$

R-linear in $M . \Psi\left(n_{3}, m_{1} r_{1}+m_{2} r_{2}\right)=\left[n_{2} \otimes\left(m_{1} r_{1}+m_{2} r_{2}\right)\right]$

$$
\begin{aligned}
& =\left[n_{2} \otimes m_{1}\right] r_{1}+\left[n_{2} \otimes m_{2}\right] r_{2}=\psi\left(n_{3}, m_{1}\right) r_{1}+\psi\left(n_{3}, m_{2}\right) r_{2} \text {. } \\
& \text { So } \exists \overline{\overline{4}}: N_{3} \otimes_{S} M \longrightarrow N_{2} \otimes_{S} M / / m\left(f_{1} \otimes 1 d\right), \bar{\Psi}\left(n_{3} \otimes m\right)=\left[n_{2} \otimes m\right] \\
& \text { where } f_{2}\left(n_{2}\right)=n_{3} \text {. }
\end{aligned}
$$

Therefore π and $\bar{\Psi}$ are inverses of each other; this implies $\operatorname{Im}\left(f_{1} \otimes i d.\right)=\operatorname{ker}\left(f_{2}\right.$ id. $)$ and $\operatorname{lm}\left(f_{2}\right.$ sid. $)=N_{3} \otimes_{5} M$; and claim follows.

Corollary. Suppose M is an (S, R)-bimodute. Then $-\otimes_{S} M$ is an exact functor if and only if for an infective $f \in \operatorname{Hom}_{S}\left(N_{1}, N_{2}\right)$ we get that $f \otimes i d \in \operatorname{Hom}_{R}\left(N_{1} M, N_{2} \otimes_{S} M\right)$ is also infective.

$$
0 \rightarrow N_{1} \xrightarrow{f_{1}} N_{2} \text { exact } \Rightarrow 0 \rightarrow N_{1} \otimes_{S} M \xrightarrow{f_{1} \text { id. }} N_{2} \otimes_{S} M \text { exact }
$$

Def. An (S, R)-bimodule is called flat if $-\otimes_{S} M$ is an exact functor.

Lecture 19: Associativity of tensor product
Remark. Any left S-mod is an (S, \mathbb{Z})-bimodule. So for right $S-\bmod N$ and left $S-m o d M, N \otimes_{S} M$ is a well-defined abelian group. (And if M is an (S, R)-bimodule, then the two tensor products are "the same".)

And so we can and will talk about flat S-modules.

Lemma. Let M be an (S, R)-bimodule, N be a right S-module, and L be a left R-module; then

$$
\begin{aligned}
& \left(N \otimes \otimes_{S} M\right) \otimes_{R} L \leadsto N \otimes_{S}\left(M \otimes_{R} L\right) \\
& (n \otimes m) \otimes l \longmapsto n \otimes(m \otimes l)
\end{aligned}
$$

Pf. For $l_{\ell} L$, let $f_{l}: N \times M \rightarrow N \otimes_{S}\left(M \otimes_{R} L\right)$,

$$
f_{l}(n, m):=n \otimes\left(m \otimes l_{0}\right) .
$$

S-balanced. $f_{l_{0}}(n \cdot s, m)=(n \cdot s) \otimes\left(m \otimes l_{0}\right)=n \otimes s \cdot\left(m \otimes l_{0}\right)$

$$
=n \otimes\left(\operatorname{sim} \otimes l_{0}\right)=f_{l}(n, s m)
$$

Linear in $N \cdot f_{l_{0}}\left(n_{1}-n_{2}, m\right)=\left(n_{1}-n_{2}\right) \otimes\left(m \otimes l_{0}\right)$

$$
\begin{aligned}
& =n_{1} \otimes\left(m \otimes l_{0}\right)-n_{2} \otimes\left(m \otimes l_{0}\right) \\
& =f_{l_{0}}\left(n_{1}, m\right)-f_{l_{0}}\left(n_{2}, m\right)
\end{aligned}
$$

Lecture 19: Associativity of tensor product

Linear in $M \cdot f_{l_{0}}\left(n, m_{1}-m_{2}\right)=n \otimes\left(\left(m_{1}-m_{2}\right) \otimes l_{0}\right)$

$$
\begin{aligned}
& =n \otimes\left(m_{1} \otimes l_{0}\right)-n \otimes\left(m_{2} \otimes l_{0}\right) \\
& =f_{l_{0}}\left(n, m_{1}\right)-f_{l_{0}}\left(n, m_{2}\right) .
\end{aligned}
$$

So \exists an abelian group homomorphism $\Psi_{l_{0}}: N \otimes_{S} M \rightarrow N \otimes_{S}\left(M \otimes_{R} L\right)$,

$$
\Psi_{l_{0}}(n \otimes m)=n \otimes\left(m \otimes l_{0}\right)
$$

Let $\psi:\left(N \otimes_{S} M\right)_{x} L \rightarrow N \otimes_{S}\left(M \otimes_{R} L\right), \psi(n \otimes m, l):=n \otimes(m \otimes l)$. We have already proved that 4 is well-defined and linear in the first factor.

R-balanced. $\psi((n \otimes m) \cdot r, l)=\psi(n \otimes m r, l)$

$$
=n \otimes(m r \otimes l)=n \otimes(m \otimes r l)=\psi(n \otimes m, r l)
$$

Linear in L. FF $^{\left(n \otimes m, l_{1}-l_{2}\right)=n \otimes\left(m \otimes l_{1}-l_{2}\right)}$

$$
=n \otimes\left(m \otimes l_{1}\right)-n \otimes\left(m \otimes l_{2}\right)=\Psi\left(n \otimes m, l_{1}\right)-\Psi\left(n \otimes m, l_{2}\right) .
$$

So \exists an abelian gp homomorphism $\tilde{\psi}:\left(N \otimes_{S} M\right) \otimes_{R} L \longrightarrow N \otimes_{S}\left(M \otimes_{R} L\right)$

$$
(n \otimes m) \otimes l \longmapsto n \otimes(m \otimes l)
$$

Similarly one can prove that \exists an abelian gp ham.
$\tilde{\theta}: N \otimes_{S}\left(M \otimes_{R} L\right) \longrightarrow\left(N \otimes_{S} M\right) \otimes_{R} L, n \otimes(m \otimes l) \longmapsto(n \otimes m) \otimes l$; and $\tilde{\theta}$ and $\widetilde{\Psi}$ are inverse of each other; and the claim follows.

Lecture 19: Tensor product of flat modules

Theorem. Suppose N is a flat right $S-\bmod$ and M is an (S, R) bimodule which is a flat right R-mod. Then $N \otimes_{S} M$ is a flat R-mod.

Pf. Left R-mod \longrightarrow Left S-mod $\longrightarrow A b$

Let $0 \rightarrow L_{1} \xrightarrow{f_{1}} L_{2} \xrightarrow{f_{2}} L_{3} \rightarrow 0$ be a S.E.S.
Then

And so, since the $1^{\text {st }}$ row is a S.E.S, the $2^{\text {nd }}$ row is a S.E.S. as well.

