Lecture 17: More on Hom(M,) functor
Wednesday, February 14, 2018 902 AM
We have seen that
$$F_M: R-mod \rightarrow Ab$$
 is a left exact functor.
 $R-mod$ could be either left $R-mod$ or right $R-mod$.
We say M is an (S,R) - bi-module if it is a left $S-mod$
and right $R-mod$ and $\forall seS$, re R , re M , $(sx) \cdot r = s \cdot (x \cdot r)$.
One can see that M is an (S,R) - bi-module exactly cohen
it is a left SxR - module. In particular, for commutative
rings R and S , M is an (S,R) - bi-module exactly cohen
it is a left SxR - module. In particular, for commutative
rings R and S , M is an (S,R) - bi-module. Then for any
right R -mod N we have that $Hom(M,N)$ is a right
 $S-mod$ with the following scalar multiplication:
 \forall seS, effection (M,N) , $x \in M$, $(\Psi,S)(x) := 2\Psi(S,X)$
 R , $(\Psi,S)(x_1r_1 + x_2r_2) = \Psi(S \cdot (X_1r_1 + x_2r_2)) = 2\Psi((S \cdot X_1)r_1 + (3F_S)r_2)$
 $= 2\Psi(S,X_1)r_1 + 2\Psi(S \cdot X_2)r_2 = (2\Psi S)(X_1)r_1 + (3F_S)(r_2)r_2$.
Hence Ψ set from (M,N) . One can easily check module proper.

Lecture 17: More on Hom(M,_) functor Wednesday, February 14, 2018 9:24 AM Proposition. Suppose M is an (S,R)-bi-module. Then F_M: (right) R-mod -> (right) S-mod is a well-defined functor. $\frac{PF}{M}$ We have already checked that $F_M(N)$ is a right S-mod. So we need to check that for $\phi \in Hom_{\phi}(N_1, N_2)$ we have $F_{M}(\phi) \in Hom_{S}(F_{M}(N_{1}), F_{M}(N_{2}))$. We have already proved that $F_M(\phi)$ is an abelian group homomorphism. So it is enough to show: $\forall \forall \epsilon F_{M}(N_{1}), s \epsilon S, (F_{M}(\phi))(\forall s) \stackrel{?}{=} (F_{M}(\phi))(\epsilon s)$ $F_{M}(\phi)(\mathcal{U},s) = \phi \circ (\mathcal{U},s) = F_{M}(\phi)(\mathcal{U}) \cdot s$ $\int (\phi \circ (\mathcal{U} s))(x) = \phi (\mathcal{U} (s.x)) = (\phi \circ \mathcal{U})(s.x)$ $= \left(\left(\Rightarrow^{\circ} \psi \right) \cdot s \right) (x)$ $= \left(\left(\mathcal{F}_{\mathsf{M}}(\varphi) \right) (\varphi) \cdot S \right) (\infty)$ What happens as we compose two functors? Suppose M is an (S,R)-bi-module and N is a right S-module

Lecture 17: Introduction to tensor product
Wednesday, February 14, 2038 937AM
Then (right) R-mod
$$\rightarrow$$
 (right) S-mod \rightarrow Ab
 F_{M} F_{N} F_{N}
is a functor.
For a right R-mod L ase have
 $F_{N}(F_{M}(L)) = Hon_{S}(N, Hom_{R}(M, L))$.
 \mathbb{R} Is $F_{N} \circ F_{M}$: Cright) R-mod \rightarrow Ab a representable
functor ? That means : is there a right R-module $F(N, M)$ st.
Hom_S(N, Hom_R(M, L)) is naturally isomorphic to
Hom_S(N, Hom_R(M, L)) is naturally isomorphic to
Hom_S($f(N,M)$, L).
The acord naturally means: for any L,
 $F_{N}(F_{M}(L)) \xrightarrow{\gamma}_{L} F_{J(N,M)}(L)$
st. for any $\Psi \in Hom_{R}(L_{1}, L_{2})$ are have
 $F_{N}(F_{N}(F_{M}(L_{2})) \xrightarrow{\gamma}_{L_{2}} F_{J(N,M)}(L_{2})$
This means η_{L} 's should be compatible with R-mod. homeomorphismes.

Lecture 17: Introduction to tensor product Wednesday, February 14, 2018 10:17 PM In particular, for any fettom (F(N,M),L), we should have Hom (N, Hom (M, F(N, M)) - Hom (F(N, M), F(N, M)) ک لُب This idea ψŶ is essentially proof of Yoneda's lemma Let's take a closer look at elements of Hom, (N, Homp (M,L)) and $\hat{\Psi}(\varphi)$. For \$= Hom (N, Hom (M, L)), let f. N×M→L, $\mathbf{f}_{\mathbf{b}}(\mathbf{n},\mathbf{m}) := (\mathbf{\phi}(\mathbf{n}))(\mathbf{m}) \, .$ Then • $f_{\mathbf{a}}(\mathbf{n} \cdot \mathbf{s}, \mathbf{m}) = (\phi(\mathbf{n} \cdot \mathbf{s}))(\mathbf{m}) = (\phi(\mathbf{n}) \cdot \mathbf{s})(\mathbf{m}) = \phi(\mathbf{n}) (\mathbf{s} \cdot \mathbf{m})$ $= f_{a}(n, sm)$ (balanced) • $f_{\Phi}(n_1 - n_2, m) = (\Phi(n_1 - n_2))(m) = (\Phi(n_1))(m) - (\Phi(n_2))(m)$ $= f_{ds}(n_1,m) - f_{ds}(n_2,m) \quad (linear \ m \ N)$ $f_{+}(n, m_1r_1 + m_1r_2) = (\phi(n))(m_1r_1 + m_2r_2)$ $= (\phi(n))(m_1) r_1 + (\phi(n))(m_2) r_2$ (R-linear on M) (+) · frie = 24 · frie (the way representable functor is defined.)

Lecture 17: Universal property of tensor product
Wedneday, February 14, 2013 SOLPM
And one can see that, if
$$f:N\times M \rightarrow L$$
 is S-balanced, linear
in N, R-linear in M, then $(\bigoplus_{i}(n_{i})(m_{i}):=f(n,m)$ defines an
element of Hom_S(N, Hom_R(M,L)). So overall we need to
find a right R-mod $F(N,M)$ and
 $f_{\sigma}:N\times M \longrightarrow F(N,M)$ with \bigotimes properties
st. if $f:N\times M \longrightarrow L$ has \bigotimes , then
 $\exists I$ $\forall e$ Hom_R($\mathcal{F}(N,M)$,L); $\forall e f_{\sigma} = f$.
 $f_{\sigma} \neq f(N,M)$ (because $f(H)$)
 $N\times M \Rightarrow I = I$
So we should define $F(N,M)$ with least possible relations from
 $N\times M$; $f_{\sigma} = F(N\times M)$
Let $F(N,M):= F(N\times M)$
 $(n_{1}n_{2},m)-(n_{2}m)+(n_{2}m)_{3}$
 $(n_{1}n_{2},m)-(n_{2}m)+(n_{2}m)_{3}$
 $(n_{1}n_{2},m)-(n_{2}m)+(n_{2}m)_{3}$
 $neN,meM, seeS, rieR >,$
and $f_{\sigma}:N\times M \longrightarrow F(N,M)$, $f_{\sigma}(n,m) = E(n,m)I$.
Now by the universal property.