Lecture 16: Representable functors

Monday, February 12, 2018 11:14 AM

In the previous lecture we defined functor. Here is an important example

$$\frac{Ex}{Suppose} \quad \text{Hom}_{\mathbb{C}}(a,b) \text{ is a set for any } a,b \in Obj(C) .$$

$$\text{For a given } a_{0} \in Obj(C), \text{ let}$$

$$F_{a}: C \longrightarrow \text{Set}, \quad F_{a_{0}}(b) := \text{Hom}_{\mathbb{C}}(a_{0}, b)$$
and, for $\phi \in \text{Hom}_{\mathbb{C}}(b_{1}, b_{2})$, let

$$F_{a_{0}}(\phi): \quad F_{a_{0}}(b_{1}) \longrightarrow F_{a_{0}}(b_{2}), \quad F_{a_{0}}(\phi)(\psi) := \phi \circ \psi$$

$$a_{0} \xrightarrow{\Psi} b_{1} \xrightarrow{\Psi} b_{2}$$

$$\text{Then } F_{a_{0}} \text{ is a functor.}$$

$$a_{0} \xrightarrow{\Psi} b_{1} \xrightarrow{\Phi} b_{2}$$

$$a_{0} \xrightarrow{\Psi} b_{2} \xrightarrow{\Phi} b_{3} \qquad F_{a_{0}}(\phi)(\psi) := \phi \circ \psi$$

$$a_{0} \xrightarrow{\Psi} b_{2} \xrightarrow{\Phi} b_{3} \qquad F_{a_{0}}(\phi)(\psi) := \phi \circ \psi$$

$$a_{0} \xrightarrow{\Psi} b_{2} \xrightarrow{\Phi} b_{3} \qquad F_{a_{0}}(\phi)(\psi) := \phi \circ \psi$$

$$a_{0} \xrightarrow{\Psi} b_{1} \xrightarrow{\Phi} b_{2} \xrightarrow{\Phi} b_{3} \qquad F_{a_{0}}(\phi)(\psi) := \phi \circ \psi$$

$$a_{0} \xrightarrow{\Psi} b_{1} \xrightarrow{\Phi} b_{2} \xrightarrow{\Phi} b_{3} \qquad F_{a_{0}}(\phi)(\psi) := \phi \circ \psi$$

$$a_{0} \xrightarrow{\Psi} b_{1} \xrightarrow{\Phi} b_{2} \xrightarrow{\Phi} b_{3} \qquad F_{a_{0}}(\phi)(\psi) = \phi \circ \psi$$

$$a_{0} \xrightarrow{\Psi} b_{1} \xrightarrow{\Phi} b_{2} \xrightarrow{\Phi} b_{3} \qquad F_{a_{0}}(\phi)(\psi)(\psi) = \phi \circ \psi$$

$$a_{0} \xrightarrow{\Psi} b_{1} \xrightarrow{\Phi} b_{2} \xrightarrow{\Phi} b_{3} \qquad F_{a_{0}}(\phi)(\psi)(\psi) = \phi \circ \psi$$

$$a_{0} \xrightarrow{\Phi} b_{1} \xrightarrow{\Phi} b_{2} \xrightarrow{\Phi} b_{3} \qquad F_{a_{0}}(\phi)(\psi)(\psi) = \phi \circ \psi$$

$$a_{0} \xrightarrow{\Phi} b_{1} \xrightarrow{\Phi} b_{2} \xrightarrow{\Phi} b_{3} \qquad F_{a_{0}}(\phi)(\psi)(\psi) = \phi \circ \psi$$

$$a_{0} \xrightarrow{\Phi} b_{1} \xrightarrow{\Phi} b_{2} \xrightarrow{\Phi} b_{3} \qquad F_{a_{0}}(\phi)(\psi)(\psi) = \phi \circ \psi$$

$$a_{0} \xrightarrow{\Phi} b_{1} \xrightarrow{\Phi} b_{2} \xrightarrow{\Phi} b_{3} \qquad F_{a_{0}}(\phi)(\psi)(\psi) = \phi \circ \psi$$

$$a_{0} \xrightarrow{\Phi} b_{1} \xrightarrow{\Phi} b_{2} \xrightarrow{\Phi} b_{3} \qquad F_{a_{0}}(\phi)(\psi)(\psi) = \phi \circ \psi$$

$$a_{0} \xrightarrow{\Phi} b_{1} \xrightarrow{\Phi} b_{2} \xrightarrow{\Phi} b_{3} \qquad F_{a_{0}}(\phi)(\psi)(\psi) = \phi \circ \psi$$

$$a_{0} \xrightarrow{\Phi} b_{1} \xrightarrow{\Phi} b_{2} \xrightarrow{\Phi} b_{3} \qquad F_{a_{0}}(\phi)(\psi)(\psi) = \phi \circ \psi$$

$$a_{0} \xrightarrow{\Phi} b_{1} \xrightarrow{\Phi} b_{2} \xrightarrow{\Phi} b_{3} \qquad F_{a_{0}}(\phi)(\psi)(\psi) = \phi \circ \psi$$

$$a_{0} \xrightarrow{\Phi} b_{1} \xrightarrow{\Phi} b_{2} \xrightarrow{\Phi} b_{3} \qquad F_{a_{0}}(\phi)(\psi)(\psi) = \phi \oplus \psi$$

$$a_{0} \xrightarrow{\Phi} b_{1} \xrightarrow{\Phi} b_{2} \xrightarrow{\Phi} b_{3} \qquad F_{a_{0}}(\phi)(\psi)(\psi) = \phi \oplus \psi$$

$$a_{0} \xrightarrow{\Phi} b_{1} \xrightarrow{\Phi} b_{2} \xrightarrow{\Phi} b_{3} \qquad F_{a_{0}}(\phi)(\psi)(\psi) = \phi \oplus \psi$$

$$a_{0} \xrightarrow{\Phi} b_{1} \xrightarrow{\Phi} b_{2} \xrightarrow{\Phi} b_{3} \qquad F_{a_{0}}(\phi)(\psi)(\psi) = \phi \oplus \psi$$

$$a_{0} \xrightarrow{\Phi} b_{1} \xrightarrow{\Phi} b_{2} \xrightarrow{\Phi} b_{3} \qquad F_{a_{0}}(\phi)(\psi)(\psi) = \phi \oplus \psi$$

$$b_{1} \xrightarrow{\Phi} b_{2} \xrightarrow{\Phi} b_{3} \qquad F_{a_{0}}(\phi)(\psi)(\psi) = \phi \oplus \psi$$

$$b_{1} \xrightarrow{\Phi} b_{2} \xrightarrow{\Phi} b_{3} \qquad F_{a_{0}}(\phi)(\psi)(\psi)(\psi) = \phi \oplus \psi$$

$$b_{1} \xrightarrow{\Phi} b_$$

Lecture 16: Representable functors of R-mod Monday, February 12, 2018 1:20 AM Lemma. For $\varphi \in Hom_{\mathcal{D}}(N_1, N_2)$, $F_{\mathcal{M}}(\varphi) \in Hom(F_{\mathcal{M}}(N_1), F_{\mathcal{M}}(N_2))$ (where F_M is the $Hom_p(M, -)$ functor) $\frac{Pf}{Pf} = \frac{F_{M}(\phi)(v_{1} - v_{2})}{\phi} = \phi \circ (v_{1} - v_{2}) = \phi \circ v_{1} - \phi \circ v_{2}$ $= F_{M}(\phi)(2\xi) - F_{M}(\phi)(2\xi) \cdot \blacksquare$ Next we will investigate whether injective or surgective maps are sent to injective or surjective, resp. R-mod Ab $\frac{Pf}{N} \quad Suppose \quad \left(F_{N}(\phi)\right)(\psi) = 0 \qquad \qquad M^{\frac{2\mu}{2}} N_{1} \xrightarrow{\phi} N_{2}$ (FM(4))(+) Then $\varphi(\mathcal{Y}(x)) = 0 \quad \forall x \in M. As <math>\varphi$ is injective, $\mathcal{Y}(x) = 0 \quad \forall x$. Hence et_o. Thus FM(\$) is injective. Theorem. If $0 \rightarrow N_1 \xrightarrow{\sharp_1} N_2 \xrightarrow{\sharp_2} N_3 \rightarrow 0$ is a short exact seq., then 0 - Hom (M, N,) + Hom (M, N2) + Hom (M, N3) is exact. (But \hat{f}_2 is NOT necessarily surjective). $\frac{PP}{2}$. We have already proved that \hat{F}_{1} is injective and

Lecture 16: Left exactness of Hom(M,_) Monday, February 12, 2018 1:38 AM $\hat{f}_2 \circ \hat{f}_1 = F_M(\hat{f}_2) \circ F_M(\hat{f}_1) = F_M(\hat{f}_2 \circ \hat{f}_1) = 0 \quad \text{and so}$ In $\hat{F}_1 \subseteq \ker \hat{F}_2$. So it is enough to show $\ker \hat{F}_2 \subseteq \operatorname{Im} \hat{F}_1$. Suppose $\varphi \in \ker \hat{f_2}$. $\circ \rightarrow N_1 \xrightarrow{f_1} N_2 \xrightarrow{f_2} N_3 \longrightarrow \circ$ So for the ce $\mathsf{Im} \ \varphi \subseteq \mathsf{ker} \ f_{\mathfrak{D}} = \mathsf{Im} \ f_{\mathfrak{1}} \ \Rightarrow \forall x \in \mathsf{M}, \exists y_{\mathfrak{1}} \in \mathsf{N}_{\mathfrak{1}} \ \mathsf{s} \mathsf{+} \, .$ $\Phi(x) = f_1(y_1)$ Since f_1 is injective, $\exists | y_1 \in N_1$ sit. $\Phi(x) = f_1(y_1).$ Let $\overline{\Phi}: M \longrightarrow N_1$, $\overline{\Phi}(x) := y_1$. $\begin{array}{c} & M \\ & \overline{\Phi} \\ & 2 \\ & 2 \\ & \overline{\Phi} \\ & 2 \\ &$ $f = \overline{\varphi}(x) = y_1$ and $\overline{\varphi}(x) = y_1'$, then $f_{1}(y_{1} + ry_{1}') = f_{1}(y_{1}) + rf_{1}(y_{1}') = \phi(x) + r\phi(x')$ $= \phi(x + rx') \Rightarrow \overline{\phi}(x + rx') = y_1 + ry_1'$ $= \overline{\Phi}(X) + r\overline{\Phi}(X).$ And so $\overline{\Phi} \in Hom_{R}(M, N_{1})$ and $\overline{\Phi} = f_{1} \circ \overline{\Phi}$ $= F_{M}(f_{1})(\overline{\Phi})$ $\Rightarrow \phi \in Im \hat{f}_1$. Notice that $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}_{2\mathbb{Z}},\mathbb{Z}) = o$; And so

Lecture 16: Not necessarily an exact functor Monday, February 12, 2018 1:59 AM $\circ \to \mathbb{Z} \xrightarrow{*^2} \mathbb{Z} \to \mathbb{Z} \xrightarrow{*^2} \circ$ ana $\circ \rightarrow \operatorname{Hom}\left(\mathbb{Z}_{2\mathbb{Z}},\mathbb{Z}\right) \rightarrow \operatorname{Hom}\left(\mathbb{Z}_{2\mathbb{Z}},\mathbb{Z}\right) \rightarrow \operatorname{Hom}\left(\mathbb{Z}_{2\mathbb{Z}},\mathbb{Z}\right) \rightarrow \operatorname{Hom}\left(\mathbb{Z}_{2\mathbb{Z}},\mathbb{Z}_{2\mathbb{Z}}\right) \not \to \circ$ Theorem. The following statements are equivalent: (a) Hom (P,_) functor is an exact functor; that means if $0 \rightarrow M_1 \xrightarrow{f_1} M_2 \xrightarrow{f_2} M_3 \rightarrow 0$ is a S.E.S., then $\circ \longrightarrow \operatorname{Hom}_{\mathcal{R}}(\mathbb{P}, \mathbb{M}_{1}) \xrightarrow{\widehat{f}_{4}} \operatorname{Hom}_{\mathcal{R}}(\mathbb{P}, \mathbb{M}_{2}) \xrightarrow{\widehat{f}_{2}} \operatorname{Hom}_{\mathcal{R}}(\mathbb{P}, \mathbb{M}_{3}) \longrightarrow \circ is a S.E.S.$ (b) If ϕ is surgective, then $\hat{\phi}$ is surgective. (e) If M⁺→N→o is exact, then any f∈ Hom (P, N) has a lift $F \in Hom_{R}(P, M)$; that means F j l $M \longrightarrow N \longrightarrow 0$ (d) Any S.E.S. of the form o -> M1 -> M2 -> P-> o splits. (e) P is a direct summand of a free R-mad; that means ∃ an R-mod N and a free R-mod F s.t. F~ PON. $\underline{\mathcal{H}}$. (a) \Leftrightarrow (b) Previous Proposition gives us this.

Lecture 16: Projective modules
Monday, February 12,2018 847 AM
(b)
$$\Rightarrow$$
 (c) Since ϕ is surgective, $\hat{\phi}$ is $H_{1,\phi}^{-1}M_{2,\phi}^{-1} \circ$
surgective. So $\exists F \in Hom_{R}(P, M_{1})$ s.t. $\hat{\Phi}(F) = f$; that
means $\phi \circ F = f$; which means F is a lift of f .
(c) \Rightarrow (b) Suppose $\phi: M_{1,\phi} M_{2}$ is surgective, and fe thom (P, M_{2}) .
Then $\exists Fetlom_{R}(P, M_{1}), \hat{\Phi}(F) = f$; this means $F : \int_{M_{1,\phi}}^{P} f f$
 $M_{1,\phi}^{-1}M_{2,\phi} \to 0$
(c) \Rightarrow (d) Suppose $\circ \rightarrow M_{1,\phi} M_{2,\phi} \to P \rightarrow \circ$ is a S.E.S.
Consider $f:= id_{P}: P \rightarrow P$. By (b), id_{P} has a lift $g \in Hom_{R}(P, M_{2})$;
that means $\exists e' f \\ \circ \rightarrow M_{1,\phi} + M_{2,\phi} \to P \rightarrow \circ$
And so this S.E.S. splits.
(d) \Rightarrow (e) Let $F(P)$ be the free R -mod. generated by
the set P . By the universal property of free modules
 $\exists \phi: F(P) \rightarrow P$, st. $\phi(x) = x$ $\forall x \in P$; in parts:
 $\circ \rightarrow \ker \phi \rightarrow F(P) \rightarrow P \rightarrow \circ$
Is a S.E.S. Hence $F(P) \simeq \ker \phi \oplus P$.

Lecture 16: Projective modules

Tuesday, February 13, 2018 8:35 AM

(e) ⇒ (c) Suppose F(A)= PON where F is a free R-mod. $F(A) \simeq P \oplus N$ $M_1 \rightarrow M_2 \rightarrow o$ For any a A, let x e M, be such that $\varphi(x_{a}) = f(pr(a))$. By the universal property of free R-modules, $\exists I \quad \exists E \in Hom_{\mathcal{P}}(F(A), M_{1}), \quad \exists E(A) := \chi_{A} \cdot So \quad \text{the following}$ FIA HOPTA diagram commutes: $M_1 \longrightarrow M_2$ As F(A) is generated by A, we get that the following F(A) ≈ PON is a commuting diagram: Let $F: P \rightarrow M_1$, $F(x) := \tilde{F}_{o,1}(x)$ $= \stackrel{\sim}{\mp} (x, \circ)$ So one can see that F is a lift of f.

Lecture 16: Projective modules Tuesday, February 13, 2018 8:46 AM Def. A module which satisfies the equivalent properties in the previous theorem is called a projective module. Corollary. Suppose D is an integral domain. Then $(a) \Rightarrow (b) \Rightarrow (c)$ (a) M is free. (b) M is projective. (c) M is torsion free. Moreover, if D is a PID and M is f.g., then (a), (b), and (c) are equivalent. $Pf.(a) \Rightarrow (b) \lor (M is a direct summand of a free mod!)$ (b) \Rightarrow (c) M is a direct summand of a free mod. $\implies M \xrightarrow{\oplus} D$ Suppose $(x_i) \in Tor(M)$. So $\exists d \in D \setminus \{o_i\}$ s.t. $d(x_i) = o$ $\Rightarrow \forall i, d x_i = 0 \Rightarrow x_i = 0 \Rightarrow (x_i) = 0.$ $d \neq 0$. When D is a PID and M is a torsion-free f.g. D-mod, then by the classification of such modules M is free. $\underline{Ex.} < 2, \sqrt{-10}$ is not a free Z[$\sqrt{-10}$] - module, but it is projective.

Lecture 16: Projective modules
Trooder, February 13, 2018 902 AM
Solution. Show I is not a principal ideal; but, as
$$I \subseteq \mathbb{R}$$

(cahere $\mathbb{R} = \mathbb{Z}[I_{1}^{-100}]$), rank $I \leq 1$.
Consider $0 \rightarrow \ker \phi \rightarrow \mathbb{R}^{2} \rightarrow I \rightarrow 0$
 $(\pi_{1}g_{1}) \mapsto 2^{\chi_{1}} + \sqrt{10} g_{1}$
If are show it splits, then $\mathbb{R}^{2} \simeq I \oplus \ker \phi_{1}$ and so I is
projective. Hence are need to find
 $\Psi: I \rightarrow \mathbb{R}^{2}$, $\Psi(\chi) := (c_{\perp}\chi, c_{2}\chi)$
st $0 \ c_{\perp}, c_{\perp}e$ field of fraction of $\mathbb{R} = \mathbb{Q}[I_{1}^{-10}]$
 $(2) \ c_{\perp} I \subseteq \mathbb{R}$
 $(3) \ 2 \ c_{\perp} \propto + \sqrt{-10} \ c_{\perp} \approx 1$.
Let $c_{\parallel} = \chi_{\parallel} + \sqrt{-10} \ g_{\parallel} \in \mathbb{Q}[\sqrt{-10}]$.
 $\Rightarrow 2 \ c_{\parallel} \in \mathbb{Z}[\sqrt{-10}] \iff \chi_{\parallel}, g_{\parallel} \in \frac{1}{2}\mathbb{Z}$ $f \iff \chi_{\parallel} \in \mathbb{Z}, g_{\parallel} \in \frac{1}{2}\mathbb{Z}$.
 $\left[\sqrt{-10} \ c_{\parallel} \in \mathbb{Z}[\sqrt{-10}] \iff \chi_{\parallel} \in \mathbb{Z}, \forall_{\parallel} \in \frac{1}{10}\mathbb{Z}$
and $2 \ \chi_{\parallel} + \sqrt{-10} \ \chi_{\parallel} = \sqrt{-10} \ \chi_{\perp} = 1 \ \chi_{\perp} = 0$
So $\chi_{\parallel} = 3, y_{\perp} = \frac{1}{2}, \chi_{\perp} = y_{\parallel} = 0 \ cork$:
 $\psi_{\parallel} \rightarrow \mathbb{R}^{2}, \Psi(\chi) = (3 \ \chi, + \frac{10}{2} \ \chi_{\perp})$.