Lecture 15: The short five lemma Friday, February 9, 2018 8:51 AM Det. A homomorphism of short exact sequences $0 \rightarrow M_1 \rightarrow M_2 \rightarrow M_3 \rightarrow c$ and $0 \rightarrow N_1 \rightarrow N_2 \rightarrow N_3 \rightarrow c$ is a triple \$, \$, \$, of mod. hom. such that the following diagram $\circ \to M_1 \to M_2 \to M_3 \to \circ$ 4 4 4 4 commutes. $\circ \rightarrow N_1 \rightarrow N_2 \rightarrow N_3 \rightarrow \sigma$. Similarly we define isomorphism of short exact sequence. Hence we have proved a short exact sequence $0 \rightarrow M_1 \xrightarrow{f_1} M_2 \xrightarrow{f_2} M_3 \rightarrow 0$ is isomorphic to the short exact sequence $0 \rightarrow f_1(M_1) \rightarrow M_2 \rightarrow M_2/f_1(M_1) \rightarrow 0$. Lemma. (The short five lemma) Suppose (\$,\$,\$,\$) is a homomorphism of SES.s $0 \rightarrow M_1 \rightarrow M_2 \rightarrow M_3 \rightarrow 0$ and $o \rightarrow N_1 \rightarrow N_2 \rightarrow N_3 \rightarrow o$. Then a) If & and the are injective, then the is injective. (b) If ϕ and ϕ_3 are surjective, then ϕ_2 is surjective. (c) If ϕ_1 and ϕ_3 are isomorphisms, then ϕ_2 is an isomorphism.

Lecture 15: The Short Five Lemma
Sunday, February 11, 2018 10:20 PM

$$\begin{array}{c} PF. (h) \text{ Suppose } \oint_{a}(x_{2}) = b. \quad 0 \rightarrow M \xrightarrow{a} + f \xrightarrow{b} M_{2} \xrightarrow{b} M_{3} \xrightarrow{b} 0 \xrightarrow{b} M_{4} \xrightarrow{b} M_{2} \xrightarrow{b} M_{4} \xrightarrow{b} M_{2} \xrightarrow{b} M_{4} \xrightarrow{b$$

Lecture 15: Split short exact sequences
Sunday, February 11, 2018 1149 PM
Proposition. Suppose
$$\rightarrow M_1 \stackrel{4}{\rightarrow} M_2 \stackrel{4}{\rightarrow} M_3 \rightarrow o$$
 is a short exact
sequence of R-modules. Then the following statements are equivalent:
(a) $\exists N_2 \subseteq M_2$ submodule s.t. $M_2 \equiv N_2 \oplus \ln f_1$.
(b) $\exists g_1 \in Hom_R(M_2, M_1)$, $g_1 \circ f_1 = id_{M_1} \circ \rightarrow H_1 \stackrel{4}{\leftrightarrow} M_2 \stackrel{4}{\rightarrow} M_3 \rightarrow o$
(c) $\exists (id_{M_1}, +, id_{N_2})$: isomorphism of S.E.S.
 $\rightarrow M_1 \stackrel{4}{\rightarrow} M_2 \stackrel{4}{\rightarrow} M_3 \rightarrow o$
(d) $\exists g_1 \in Hom_R(M_3, M_2)$, $f_2 \circ g_2 = id_{M_3} \circ \rightarrow M_1 \stackrel{4}{\rightarrow} M_2 \stackrel{4}{\rightarrow} M_3 \rightarrow o$
 $ff.$ (a) \Rightarrow (b) Since f_1 is injective, $M_1 \stackrel{f_1}{\rightarrow} M_2 \stackrel{4}{\rightarrow} M_3 \rightarrow o$
 $M_1 \rightarrow Im f_1, X_1I \rightarrow f_1(X_1)$ is an isom. $Im f_1 \rightarrow Im f_1 \oplus N_2$
So $\exists \overline{g_1}: Im f_1 \rightarrow M_1$, $St. \overline{g_1}(f_1(X_1)) = X_1$.
Let $p: M_a \rightarrow Im f_1$ be the $Im f_1 - component$. So
 $p(f_1(X_1)) = \overline{f_1}(p(f_1(x_1))) = \overline{f_1}(f_1(x_1)) = X_1$.
(b) \Rightarrow (c) Let $\phi(X_2):= (g_1(X_2), f_2(X_2))$. Then
 $\phi(f_1(X_1)) = (g_1(f_1(X_1)), f_2(f_2(X_2))) = (X_1, o)$ and

Lecture 15: Split short exact sequences Monday, February 12, 2018 12:07 AM $p(\varphi(x_2)) = p(g_1(x_2), f_2(x_2)) = f_2(x_2)$. Hence (id. $M_1, \varphi, id. M_3$) is a homomorphism of S.E.S.'s. Therefore, by the short five lemma, it is an isomorphism. $(e) \rightarrow (d) \quad \text{Let } g_2(x_3) := \phi^{-1}(o, x_3) \cdot$ $\circ \rightarrow M_1 \rightarrow M_2 \rightarrow M_3 \rightarrow \circ$ _____ _↓ **↓** ↓ ↓ $S_{0} \Rightarrow (g_{2}(x_{3})) = (0, x_{3}),$ $\circ \longrightarrow \mathsf{M}_{1} \longrightarrow \mathsf{M}_{1} \oplus \mathsf{M}_{3} \longrightarrow \mathsf{M}_{3} \twoheadrightarrow \circ$ which implies $f_2(g_2(x_3)) = x_3$; and so $f_2 \circ g_2 = id_{M_3}$. (d) \Rightarrow (a) <u>Claim</u>. M₂ = ker $f_2 + \text{Im } g_2$ $\frac{Pf}{2} \cdot f_2 \cdot g_2 \left(f_2 \left(x_2 \right) \right) = f_2 \left(x_2 \right) \Rightarrow g_2 \left(f_2 \left(x_2 \right) \right) - x_2 \in \ker f_2$ $\Rightarrow \chi_2 \in \ker f_2 + \operatorname{Im} g_2$. <u>Claim</u>. ker $f_2 \cap \lim g = 0$ $\underbrace{\underline{Pf}}_{2} \times_{2} \in \ker f_{2} \cap \operatorname{Im} g_{2} \Longrightarrow \begin{cases} f_{2}(x_{2}) = 0 \\ \chi_{2} = g_{2}(x_{3}) \end{cases} \Longrightarrow f_{2}(g_{2}(x_{3})) = 0 \\ \chi_{2} = g_{2}(x_{3}) \end{cases} \Longrightarrow \chi_{3} = 0 \\ \Longrightarrow \chi_{2} = 0 \end{cases}$ Since ker $f_2 = \text{Im } f_1$, we get $M_2 = \text{Im } f_1 \oplus \text{ker } g_2$. Def. If a short exact sequence satisfies the above equivalent properties, we say it splits.

Lecture 15: Basics of Category theory
Monday, February 12,2035 12:30 AM
We very briefly discuss what a category is:
fl category C has. class
$$Obj(C)$$
 of $objects$ $a \xrightarrow{f} b \xrightarrow{g} c$
. class hom (C) of morphisms
 $(\forall a, b \in C, hom_{C}(a, b) \cdot)$
Ex. Set : $Obj(Set)$: sets
. hom_{Set} (A, B) : all the functions from A to B
. Grp : $Obj(Grp)$: groups
. hom_{Grp} (G_{1}, G_{2}) : group homomorphisms.
Ab . $Obj(Ab)$: Abelian groups
. hom_{Ab} (G_{1}, G_{2}) : group homomorphisms.
. R-med : $Obj(R-med)$: R -medules
. hom_{R-med} (M_{1}, M_{2}) := Hom_R (M_{1}, M_{2}) .
Def A functor F from a category C to a category D
gives us $a \xrightarrow{f}{f(a)}$ and $F(c_{1} \circ c_{2})$.
 $f(a) \xrightarrow{f}{f(b)}$ and $F(c_{1} \circ c_{2})$.

Lecture 15: Representable functor Monday, February 12, 2018 12:56 AM <u>Ex</u>. (Forgetful functor) F: Grp - Set F(G) := G { just "forget" the group F(D) := D } structure of G. F: Ab -+ Grp "forget" that G is Abelian F: R-mod - Ab "forget" that M has salar multiplication