Lecture 09: direct sum Thursday, January 25, 2018 11:53 PM <u>Def.</u> Suppose $\frac{2}{N_i}$ is a family of submod. of M. We say $\sum_{i \in I} N_i$ is the internal direct sum of N_i 's if for $\sum_{i \in I} n_i$, $\sum_{i \in I} n_i \in \sum_{i \in I} N_i$, $\sum_{i \in I} n_i = \sum_{i \in T} n'_i \quad \text{implies} \quad n_i = n'_i \quad \text{for any } i \in I.$ In this case we write $\bigoplus_{i \in I} N_i$. Def. Suppose 2M, 3 is a family of left R-mod. Let $\bigoplus M_i := \{(m_i)\}_{i \in I} \mid m_i \in M_i;$ $\lim_{i \in I} M_i := \{(m_i)\}_{i \in I} \mid m_i \in M_i; \}$ and $\prod_{i \in T} M_i := \frac{2}{2} (m_i)_{i \in I} / m_i \in M_i \xi$ \oplus M_i is called the external direct sum of M₂'s and is I II Mi is called the direct product of Mi's. Ex. There is a bijection between $\bigoplus_{i \in \mathbb{Z}} (\mathbb{Z}_{2\mathbb{Z}})$ and set of all the finite subsets of Z, and there is a bryection between $\prod_{i \in \mathbb{Z}} (\mathbb{Z}_{2\mathbb{Z}})$ and the power set $P(\mathbb{Z})$ of \mathbb{Z} . Use this to observe that $\bigoplus_{i \in \mathbb{Z}} (\mathbb{Z}/_{2\mathbb{Z}})$ is countable and $\prod_{i \in \mathbb{Z}} (\mathbb{Z}_{2\mathbb{Z}})$ is uncountable.

Lecture 09: Universal property of external direct sum Monday, January 29, 2018 10:29 AM Remark. It is more formal to write IT N; as $\{f: I \rightarrow \bigcup_{i \in I} N_i \setminus \forall i \in I, f(i) \in N_i \}$, and $\bigoplus_{i \in I} N_i \subseteq \prod_{i \in I} N_i$. Universal Property of External Direct Sum. Suppose $3N_i$ is a family of R-mod and M is an R-mod. Suppose to Ni M is an R-mad homomorphism. Then I! R-mod homomorphism $\phi: \bigoplus_{i \in T} N_i \rightarrow M$ st. $\phi(j_i(n_i)) = \phi_i(n_i)$ where $j: N_i \rightarrow \bigoplus_{i' \in \mathbf{I}} N_{i'}$, $(j_i(n_i))_{i'} = \begin{cases} n_i & \text{if } i = i' \\ 0 & \text{otherewise.} \end{cases}$ $\Rightarrow \varphi(n;) = \varphi(f_i(n'))$ $\frac{\Re}{1}$ Existence. $\varphi((n; 1)) = \sum_{i \in T} \varphi(n_i)$ Notice that, since only finitely many terms are non-zero, the above sum is a finite summation. $\underline{R-mod} \quad \Phi((n_i)+r(n_i)) = \Phi((n_i+rn_i)) = \sum \Phi_i(n_i+rn_i)$ $= \sum \varphi_{i}(n_{i}) + r \varphi_{i}(n_{i}') = \sum \varphi_{i}(n_{i}) + r \sum \varphi_{i}(n_{i}')$ $= \Phi((n_i)) + r \Phi((n_i')) \cdot$

Lecture 09: External sum and internal sum
Presv. January 26, 2028 202 PM
Unqueness Suppose
$$\Rightarrow \in \operatorname{Hom}_{R}(\bigoplus_{i \in I} N_{i}, M)$$
 and $\Rightarrow (j_{i}(n_{i})) = \Rightarrow_{i}(n_{i})$.
Then $\Rightarrow (Cn_{i}) = \Rightarrow (\sum_{i} j_{i}(n_{i})) = \sum \Rightarrow (j_{i}(n_{i}))$
 $= \sum \Rightarrow_{i}(n_{i}) \cdot$
(Krossing \Rightarrow on Ni's, we linearly extend it.)
Remark. In group theory, the free product of G_{i} 's satisfy the
above mentioned Universal property:
 $G_{i} \xrightarrow{*} G_{i}$
 $\Rightarrow \stackrel{*}{=} I \Rightarrow \stackrel{*}{=} I$
Proposition - Suppose $\frac{2}{N}, \frac{2}{N}$ is a family of submed of M.
Then the following are equivalent:
(a) $\sum_{i \in I} N_{i}$ is an internal direct sum.
(b) $\forall j \in I$, $N_{i} \cap \sum_{i \in I} N_{i}, \Rightarrow (n_{i} \cap (n_{i})) = \sum_{i \in I} n_{i}$ is
 $an (somerghism.$

Lecture 09: internal and external direct sums

Friday, January 26, 2018 12:11 AM

Pf: (a) → (b).
If not, ∃ nj and (n_i)_{i∈I (₹j]} st. nj =
$$\sum_{i∈I \setminus \{j\}} n_i \neq o$$

which contradicts the assumption that $\sum_{i∈I} N_i$ is an internal
direct sum.
(b) → (c). Since $(n_i)_{i∈I} \in \Theta N_i$; has only finitely many
non-zero components, Φ is well-defined. It is rather easy
to check that Φ is an R-mod. homomorphism. By the def.
of $\sum_{i∈I} N_i$, we know that Φ is surjective. (till this point
we did not need any assumption. Now we are going to use (b)
to show Φ is injective. If not,
 $\exists (n_i)_{i∈I} \in \Theta N_i \setminus s_0$ st. $\Phi((n_i)_{i∈I}) = o$
 $\Rightarrow \sum_{i∈I} n_i = o$, and $\exists j∈I$ st. $n_j \neq o$.
 $\Rightarrow n_j = \sum_{i∈I \setminus s_0} (n_i) \in N_i \cap \sum_{i∈I \setminus s_0} N_i$ which contradicts (b).
(c) ⇒ (a). If $\sum_{i∈I} n_i = \sum_{i∈I} n_i'$, then $\Phi((n_i)_{i∈I}) = \Phi((n_i')_{i∈I})$
 $\Rightarrow V_i∈I, n_i = n_i'$.

Lecture 09: direct sum; free module Friday, January 26, 2018 8:37 AM $\frac{\text{Cor.}}{\text{iei}}$ If $\sum_{i \in I} N_i$ is an internal direct sum, then it is isomorphic to the external direct sum $\bigoplus_{i \in I} N_i$. Def. We say a mod. M is said to be free on the subset A $if M = \bigoplus_{a \in A} Ra \quad as an internal direct sum.$ Proposition For any non-empty set A, there is a free left R-mod. F(A) on the set A with the following universal property: A F(A) $PF ext{ of proposition. Let } F(A) := \bigoplus R \quad (external direct sum)$ = {(ra)aEA | raER, zero except for finitely many aEAJ. Let M be an R-mod. and $\phi: A \rightarrow M$ be a function. Let $\widehat{\Phi}: \bigoplus_{\alpha \in A} \mathbb{R} \to \mathbb{N}, \ \widehat{\Phi}((\Gamma_{\alpha})_{\alpha \in A}) := \sum_{\alpha \in A} \Gamma_{\alpha} \Phi(\alpha) \cdot \mathbb{I}_{\alpha \in A}$ Since ra's are zero except for finitely many a's, the above sum has only finitely many non-zero terms. It is rather easy to check that $\widehat{\phi}$ is an R-mod. homomorphism.

Lecture 09: Free modules Friday, January 26, 2018 8:50 AM Let $j: A \longrightarrow F(A)$, $j(a) = (r_{a'})$ where $r_{a'} = \frac{1}{a'}$ if a=a'lo other Then j is an embedding and $\widehat{\varphi}(j(a)) = \varphi(a)$. . F(A) is generated by j(A) as an R-mod. · Suppose €: F(A) → M is an R-mod; since F(A) is generated by j(A), $\hat{\oplus}$ is uniquely determined by $\hat{\oplus}$. Proposition. Suppose R is a unital commutative ring. Suppose m, ne \mathbb{Z}^{T} . If $\mathbb{R}^{n} = \mathbb{R}^{m}$, then n = m. Remark. In your homework assignment, there is a problem which implies the above property does not necessarily hold for non-commutative nings : End $(\bigoplus_{i \in \mathbb{Z}} \mathbb{C})$. It does hold for division rings. RP. Since R is a unital ring, it has a maximal ideal 117. Since R is a unital commutative ring, R/III is a field. For any $k \in \mathbb{Z}^{\dagger}$, $t \in \mathbb{R}^{k} := \{ \sum_{k} m_{i} : v_{i} \mid m_{i} \in t \in \mathbb{R}^{k} \} = t \in \mathbb{C}^{2} \}$. (Cie coill continue...)