Lecture 08: Parametrizing module structures on M

For a group G and a set X, we saw that there is a bijection between $\{m: G \times X \rightarrow X \mid$ action $\}$ and $\operatorname{Hom}\left(G, S_{X}\right)$.

Now for a given ring R and an abelian group M, wed like to do the same; this means we would like to parametrize all the possible scalar multiplications $m: R \times M \rightarrow M$ which makes M into a left R-mod.

Proposition. End $(M):=\{\theta: M \rightarrow M \mid$ gp homomorphism $\}$ is a ring cu.r.t. $\left\{\begin{array}{l}\left(\theta_{1}+\theta_{2}\right)(m):=\theta_{1}(m)+\theta_{2}(m) \\ \left(\theta_{1} \cdot \theta_{2}\right)(m):=\theta_{1}\left(\theta_{2}(m)\right) .\end{array}\right.$

Lecture 08: Endomorphisms of an abelian group

오 (1)

$$
\begin{aligned}
\left(\theta_{1}+\theta_{2}\right)\left(m-m^{\prime}\right) & =\theta_{1}\left(m-m^{\prime}\right)+\theta_{2}\left(m-m^{\prime}\right) \\
& =\left(\theta_{1}(m)+\theta_{2}(m)\right)-\left(\theta_{1}\left(m^{\prime}\right)+\theta_{2}\left(m^{\prime}\right)\right) \\
& =\left(\theta_{1}+\theta_{2}\right)(m)-\left(\theta_{1}+\theta_{2}\right)\left(m^{\prime}\right)
\end{aligned}
$$

So $\theta_{1}+\theta_{2} \in$ End (M).
(2)

$$
\begin{aligned}
\left(\theta_{1} \cdot \theta_{2}\right)\left(m-m^{\prime}\right) & =\theta_{1}\left(\theta_{2}\left(m-m^{\prime}\right)\right) \\
& =\theta_{1}\left(\theta_{2}(m)-\theta_{2}\left(m^{\prime}\right)\right) \\
& =\theta_{1}\left(\theta_{2}(m)\right)-\theta_{1}\left(\theta_{2}\left(m^{\prime}\right)\right. \\
& =\left(\theta_{1} \cdot \theta_{2}\right)(m)-\left(\theta_{1} \cdot \theta_{2}\right)\left(m^{\prime}\right)
\end{aligned}
$$

(3) Associativity is clear.
(4) Distribution.

$$
\begin{aligned}
& \left(\theta_{1} \cdot\left(\theta_{2}+\theta_{3}\right)\right)(m)=\theta_{1}\left(\left(\theta_{2}+\theta_{3}\right)(m)\right) \\
= & \theta_{1}\left(\theta_{2}(m)+\theta_{3}(m)\right)=\theta_{1}\left(\theta_{2}(m)\right)+\theta_{1}\left(\theta_{3}(m)\right) \\
= & \left(\theta_{1} \cdot \theta_{2}\right)(m)+\left(\theta_{1} \cdot \theta_{3}\right)(m) \\
= & \left(\theta_{1} \cdot \theta_{2}+\theta_{1} \cdot \theta_{3}\right)(m) .
\end{aligned}
$$

And

$$
\begin{aligned}
\left(\left(\theta_{1}+\theta_{2}\right) \cdot \theta_{3}\right)(m) & =\left(\theta_{1}+\theta_{2}\right)\left(\theta_{3}(m)\right) \\
& =\theta_{1}\left(\theta_{3}(m)\right)+\theta_{2}\left(\theta_{3}(m)\right) \\
& =\left(\theta_{1} \theta_{3}\right)(m)+\left(\theta_{2} \cdot \theta_{3}\right)(m) \\
& =\left(\theta_{1} \cdot \theta_{3}+\theta_{2} \cdot \theta_{3}\right)(m)-
\end{aligned}
$$

Lecture 08: Scalar multiplication and endomorphisms

Theorem. Let R be a unital ring and M be an abelian gp. Then the following maps are inverse of each other:

The main points of proof.

- Suppose M is an R-mod. Then, for any $r \in R$, $l_{r}: M \rightarrow M, l_{r}(m):=r . m$ is an abelian group homomorphism. So $l_{r} \in$ End (M)
- $R \rightarrow$ End (M) is a ring homomorphism.
$r \mapsto l_{r}$

$$
\begin{aligned}
l_{r_{1}+r_{2}}(m) & =\left(r_{1}+r_{2}\right) \cdot m=r_{1} \cdot m+r_{2} \cdot m=l_{r_{1}}(m)+l_{r_{2}}(m) \\
& =\left(l_{r_{1}}+l_{r_{2}}\right)(m) \cdot \\
l_{r_{1} r_{2}}(m) & =\left(r_{1} r_{2}\right) \cdot m=r_{1} \cdot\left(r_{2} \cdot m\right)=l_{r_{1}}\left(l_{r_{2}}(m)\right)=\left(l_{r_{1}} \cdot l_{r_{2}}\right)(m) .
\end{aligned}
$$

- If $\theta: R \rightarrow \operatorname{End}(M)$ is a ring homomorphism, then (which sends $1 \mapsto 1 d_{M}$.)

Lecture 08: Endomorphisms and module structure
$r . m:=(\theta(r))(m)$ satisfies properties of scalar multiplica. in modules:

$$
\begin{aligned}
\left(r_{1}+r_{2}\right)-m & =\left(\theta\left(r_{1}+r_{2}\right)\right)(m)=\left(\theta\left(r_{1}\right)+\theta\left(r_{2}\right)\right)(m) \\
& =\theta\left(r_{1}\right)(m)+\theta\left(r_{2}\right)(m)=r_{1} \cdot m+r_{2} \cdot m \\
r \cdot\left(m_{1}+m_{2}\right) & =(\theta(r))\left(m_{1}+m_{2}\right)=(\theta(r))\left(m_{1}\right)+(\theta(r))\left(m_{2}\right) \\
& =r \cdot m_{1}+r \cdot m_{2}
\end{aligned}
$$

$$
1 \cdot m=(\theta(1))(m)=i d_{M}(m)=m \text {. }
$$

Proposition. Suppose M is a left R-mod., and $\theta: R \rightarrow \operatorname{End}(M)$ is the induced unital ring homomorphism. Then

$$
\operatorname{End}_{R}(M):=\{f: M \rightarrow M \mid R-\bmod \text { homomorphism }\}
$$

is equal to $C_{E_{n d}(M)}(\theta(R))$; in particular, it is a subring: and, if R is commutative, then $\theta(R) \subseteq Z\left(\operatorname{End}_{R}(M)\right)$.

Pf. $f \in \operatorname{End}_{R}(M) \Leftrightarrow\{f \in$ End (M)

$$
\begin{aligned}
& {[\forall r \in R, \forall m \in M, f(r \cdot m)=r \cdot f(m)} \\
& \Leftrightarrow\left\{\begin{array}{l}
f \in \text { End } M, \\
f \cdot \theta(r)=\theta(r) \cdot f
\end{array} \Longleftrightarrow f \in C_{\text {End }(M)}(\theta(R)) .\right.
\end{aligned}
$$

Defflemma. Suppose M is a left $R-\bmod$, and $A \subseteq M$. The submadule generated by A is the smallest submodule of M that contains A. It is denoted by RA. Then RA exists and

$$
R A=\bigcap_{\substack{N \subseteq M \\ \text { submod. } \\ A \subseteq N}} N \quad \text { and } R A=\left\{\sum_{i=1}^{m} r_{i} a_{i} \mid r_{i} \in R, a_{i} \in A\right\}
$$

Pf.. If $\left\{N_{i}\right\}_{i \in I}$ is a family of submod, then $\bigcap \bigcap_{i \in I} N_{i}$ is also a submod. (coly?). And so $\bigcap_{N \subset M} N$ is the smallest submod NoM Submod
$A \subseteq N$
of M that contains A.

$$
. \forall r_{i} \in R, a_{i} \in A \Rightarrow \sum r_{i} a_{i} \in R A
$$

So The RHS \subseteq RA.
.1. $a=a \Rightarrow A \subseteq$ RHS. So it is enough to observe that RHS is a submod.

Def. Suppose $\left\{N_{i}\right\}_{i \in I}$ is a family of submodules of M.
Then we let $\sum_{i \in I} N_{i}:=\left\{\sum_{i \in I} n_{i} \left\lvert\, \begin{array}{l}n_{i} \in N_{i} \text { where } \\ n_{i}^{\prime} \text { is e zero except }\end{array}\right.\right\}$. for finitely many i

Lecture 08: Summation of modules; cyclic modules
Lemma. Suppose $\left.\sum N_{i}\right\}_{i \in I}$ is a family of submod. of M.
Then $\sum_{i \in I} N_{i}$ is the smallest submod. of M that contains N_{i} 's as subsets.

Pf. $\begin{array}{rl} & \sum_{i \in I} n_{i}+\sum_{i \in I} n_{i}^{\prime}=\sum_{i \in I} \underbrace{n_{i}+n_{i}^{\prime}}_{i n N_{i}} ; \\ r & r \sum_{i \in I} n_{i}=\sum_{i \in I} r n_{i} .\end{array}\left\{\begin{array}{l}\text { it is a } \\ \text { submod. }\end{array}\right.$
By the previous lemma, the mod. gen. by $\bigcup_{i \in I} N_{i}$ contains $\sum_{i \in I} N_{i}$; and so they are equal.

