Friday, March 9, 2018 1:11

I Let $\Phi_n(x)$ be the nth cyclotomic polynomial. Suppose p is an odd prime which does not divide n. Let $\Phi_n(x) \in \mathbb{F}_p[x]$ be $\Phi_n(x)$ modulo p. Let $E \subseteq \mathbb{F}_p$ be a splitting field of $\Phi_{n,p}(x)$ over \mathbb{F}_p .

- (1) Prove that $x^{n}-1$ does not have multiple zeros in $\overline{\mathbb{F}}_{p}$.
- (2) Suppose $\zeta \in E$ is a zero of $\Phi_{n,p}(x)$. Prove that ζ is not a zero of $\Phi_{d,p}(x)$ for $d \mid n$ and $d \neq n$. Deduce that $o(\zeta) = n$ as an element of E^{x} .

(3) Use part (2), to show $\pm_{n,p}(x) = \prod_{1 \le i \le n} (x - \xi^i)$. Deduce that $E = \mathbb{F}[\xi]$, and $Gal(\mathbb{F}[\xi]/\mathbb{F}) \longrightarrow (\mathbb{F}_n\mathbb{Z})^{\times}$. Use the fact that the Frob. map $\times \longrightarrow
\times$ generates $Gal(\mathbb{F}[\xi]/\mathbb{F})$ to deduce $Gal(\mathbb{F}[\xi]/\mathbb{F}) \simeq \langle p \rangle$ where $\langle p \rangle \subseteq (\mathbb{F}_n\mathbb{Z})^{\times}$.

(4) Prove, if \$\Pi_{n,p}(x)\$ has a zero in \$\mathbb{T}_p\$, then \$n \ p-1\$.

Use this to show there are infinitely many primes of the form {nk+1} k=1

Friday, March 9, 2018 1:46 A

- (5) Prove that $\Phi_{n,p} \propto E_p IXI is irreducible \Leftrightarrow \langle p \rangle = E_{n,p}^{\times}$.
- 2 Suppose Q[ζ_n] \subseteq $F\subseteq \mathbb{C}$ is a tower of fields where $\zeta_n=e^{\frac{2\pi i^2}{n}}$.
 - (1) For a, a & Fx, prove that

F[$\sqrt[n]{a_1}$] = F[$\sqrt[n]{a_2}$] \iff $a_1(F^x)^n = a_2(F^x)^n$ (Here $\sqrt[n]{a_1}$ means an element of $\mathbb C$ which is a zero of $x^n - a$.)

(2) Prove that F[$\sqrt[n]{a_1}$ is a Galois extension for any $a \in F^x$, and $Gal(F[\sqrt[n]{a_1}) \simeq \langle a(F^x)^n \rangle \subseteq F^x/(F^x)^n$.

- 3 Suppose E/F is a finite extension. For any $a \in E$, let $l_a : E \to E$, $l_a(e) := ae$. View l_a as an element of $End_F(E)$. Prove that E/F is separable if and only if $\forall a \in E$, l_a is diagonalizable over an algebraic closure F of F.
- H Let F be a field. Suppose for any finite extension $E_{/F}$, p | IE:FI, where p is an odd prime.
 - (1) Suppose E/F is a finite separable extension. Prove $IE:FJ=p^n$ for some $ne \mathbb{Z}^{\geq 0}$.
 - (2) Suppose F is not perfect. Prove char (F)=p.
 - (3) Suppose E/F is any finite extension. Prove [E:F]=p".

Friday, March 9, 2018 2

5 Suppose E/+ is an algebraic extension. Let

$$F^{ab} := \{ \alpha \in E \mid F[\alpha]/_{F} \text{ is Galois and } \}$$

$$Gal(F[\alpha]/_{F}) \text{ is abelian}$$

- (1) Suppose $F \subseteq K \subseteq E$, K/F is Galois, and Gal(K/F) is abelian. Prove that $K \subseteq F^{ab}$.
- (2) Prove that F is a field.
- (3) Prove that F^{ab}/F is Galois and $Gal(F^{ab}/F)$ is abelian.
- [6] Let $q = p^n$ where p is a prime and $n \in \mathbb{Z}^+$. Prove that any irreducible factor of $x^q x + 1 \in \mathbb{F}_q[x]$ has degree p.

(<u>Hint</u>. Suppose α is a zero of $\chi^q - \chi + 1$ in a splitting field. Prove that $\alpha^{q^2} = \alpha - i$; and so $\alpha = \alpha$ and $\alpha^{q^2} \neq \alpha$ for $1 \leq i \leq p-1$.

7. Suppose F is a field, forme FIXI is irreducible, and

E is a aplitting field of fox) over F. Suppose $\exists \alpha \in E \text{ s.t.}$

$$f(\alpha) = f(\alpha+1) = 0$$
. Prove that

(1) Char F = p > 0. (2) $\exists F \subseteq K \subseteq E \text{ s.t. } E/K \text{ is Galois and } E:K] = p$.

Friday, March 9, 2018

18 Suppose F is a field and char(F) ≠2. Let a,..., an ∈ Fx,

$$H:=\langle a_1(F^x)^2,...,a_n(F^x)^2\rangle \leq F^x/(F^x)^2$$
, and $E:=F[Ja_1,...,Ja_n]$.

- (1) Prove that E/F is a Galois extension.
- (2) Let G:= Gal(E/F). Prove that G is an elementary abelian 2-group; that means $G \simeq (\mathbb{Z}_{2\mathbb{Z}})^m$ for some $m \in \mathbb{Z}^2$.
- (3) Prove that H is an elementary abelian 2-group.
- (4) Let T: GxH→ {±1} ~ (Z/2Z) be

$$T(\sigma, a(x)^2) := \sigma(\sqrt{\alpha})/\sqrt{\alpha}$$

Prove that T is a non-degenerate bilinear form; that

means
$$T(\sigma_1\sigma_2, \overline{a}) = T(\sigma_1, \overline{a}) T(\sigma_2, \overline{a})$$
,

$$T(\sigma, \overline{\alpha} \overline{\alpha}') = T(\sigma, \overline{\alpha}) T(\sigma, \overline{\alpha}')$$
, and

$$\forall \sigma \in G$$
, $T(\sigma, \overline{a})=1 \Rightarrow \overline{a}=\overline{1}$

$$\forall \alpha \in H, T(\alpha, \overline{\alpha}) = 1 \Rightarrow \alpha = id.$$

(5) Deduce that
$$Gal(F[\sqrt{a}_1,...,\sqrt{a}_n]/_{\overline{F}}) \simeq \langle a_1(\overline{F}^{\times})^2,...,a_n(\overline{F}^{\times})^2 \rangle$$
.

Friday, March 9, 2018 12:01 PM

19 (1) In class we proved that $\operatorname{Aut}(\overline{F}/_{\overline{F}}) \simeq \lim_{\substack{E/F\\ \text{finite}_{\underline{F}}}} \operatorname{Aut}(\overline{E}/_{\overline{F}})$. And so

Aut (F) =) = lim Aut (F) =). Deduce that

 $Gal(\mathbb{F}/\mathbb{F}) \simeq \lim_{m \to \infty} \mathbb{Z}/_{n\mathbb{Z}} := \frac{2}{3}(a_m) \in \Pi(\mathbb{Z}/_{m\mathbb{Z}}) \forall d \mid m, a_m = a_{\mathbb{Z}}.$

- (2) Prove that $\lim_{n \to \infty} \mathbb{Z}/n\mathbb{Z}$ has no non-trivial torsion element.
- (3) Suppose $E \subseteq \overline{\mathbb{F}}_p$ is a subfield and $[\overline{\mathbb{F}}_p : E] < \infty$. Prove that $E = \overline{\mathbb{F}}_p$.

30 Suppose E/F is a finite Galois extension. Suppose

 $Gal(E/F) = <\sigma>$. View σ as an element of $End_F(E)$.

Let n:= [E:F]. For a∈E', let la:E→E, la(e)=ae.

view la as an element of End (E); and let Ta := la. o.

- (1) Prove that $T_a^i = l_{a \circ (a) \cdots o^{i-1}(a)} \circ o^i$.
- (2) Prove that the minimal polynomial of T_a (as an element of T_a) is $X N_{E/F}(a)$ where $N_{E/F}(a) = \prod_{i=0}^{n-1} \sigma^i(a)$.
- (3) Find rational canonical form of Ta.

Friday, March 9, 2018

(4) Suppose, for $a \in E^{\times}$, $N_{E/F}(a) = 1$. Show T_a has eigenvalue

one, and deduce I be E s.t. a = books.

- (5) Prove that $N_{E/F}: E^{\times} \longrightarrow F^{\times}$ is a group homomorphism and $\ker (N_{E/F}) = \frac{2}{5} b/_{\sigma(b)} \mid b \in E^{\times} \mathcal{E}$.
- (6) Prove $\exists x \in E \text{ s.t. } \{x, \sigma(x), \sigma^2(x), ..., \sigma^{h-1}(x)\} \text{ is an } F_-$ basis of E. (Hint. Use part (3) for a=1.)