1] Let $\Phi_{n}(x)$ be the $n^{\text {th }}$ cyclotomic polynomial. Suppose p is an odd prime which does not divide n. Let $\Phi_{n, p}(x) \in \mathbb{E}_{p}[x]$ be $\Phi_{n}(x)$ modulo p. Let $E \subseteq \overline{\mathbb{F}}_{p}$ be a splitting field of $\Phi_{n, p}(x)$ over $\overline{\mathbb{E}_{p}}$.
(1) Prove that $x^{n}-1$ does not have multiple zeros in $\overline{\mathbb{E}_{p}}$.
(2) Suppose $\zeta \in E$ is a zero of $\Phi_{n, p}(x)$. Prove that ζ is not a zero of $\Phi_{d, p}(x)$ for $d \mid n$ and $d \neq n$. Deduce that $o(\zeta)=n$ as an element of E^{x}.
(3) Use part (2), to show $\Phi_{n, p}(x)=\prod_{i \leq i \leq n}\left(x-\xi^{i}\right)$. Deduce that $E=\mathbb{E}_{p}[\zeta]$, and $\operatorname{Gal}\left(\mathbb{E}_{p}[\zeta] / \mathbb{E}_{p}\right) c\left(\mathbb{Z}_{n \mathbb{Z}}\right)^{x}$. Use the fact that the Frob. map $x \mapsto x^{p}$ generates $\operatorname{Gal}\left(\mathbb{F}_{p}[\xi] / \mathbb{I}_{p}\right)$ to deduce $\operatorname{Gal}\left(\mathbb{E}_{p}[\zeta] / \mathbb{\mathbb { F }}_{p}\right) \simeq\langle p\rangle$ where $\langle p\rangle \subseteq(\mathbb{Z} / n \mathbb{Z})^{x}$.
(4) Prove, if $\Phi_{n, p}(x)$ has a zero in \mathbb{F}_{p}, then $n \mid p-1$.

Use this to show there are infinitely many primes of the form $\{n k+\}_{k=1}^{\infty}$
(5) Prove that $\Phi_{n, p}(x) \in \mathbb{E}_{p}[x]$ is irreducible $\Leftrightarrow\langle p\rangle=(\mathbb{Z} / n \mathbb{Z})^{x}$. (2) Suppose $\mathbb{Q}\left[\zeta_{n}\right] \subseteq F \subseteq \mathbb{C}$ is a tower of fields where $\zeta_{n}=e^{\frac{2 \pi i}{n}}$.
(1) For $a_{1}, a_{2} \in F^{x}$, prove that

$$
F\left[\sqrt[n]{a_{1}}\right]=F\left[\sqrt[n]{a_{2}}\right] \Leftrightarrow a_{1}\left(F^{x}\right)^{n}=a_{2}\left(F^{x}\right)^{n}
$$

(Here $\sqrt[n]{a}$ means an element of \mathbb{C} which is a zero of $x^{n}-a$.) (2) Prove that $F[\sqrt[n]{a}] / F$ is a Galois extension for any $a \in F^{x}$, and $\operatorname{Gal}(F I \sqrt[n]{a} 1 / F) \simeq\left\langle a\left(F^{x}\right)^{n}\right\rangle \subseteq F^{x} /\left(F^{x}\right)^{n}$.
(3) Suppose E / F is a finite extension. For any $a \in E$, let $\ell_{a}: E \rightarrow E, l_{a}(e):=a e$. View l_{a} as an element of End ${ }_{F}(E)$. Prove that E / F is separable if and only if $\forall a \in E$, l_{a} is diagonalizable over an algebraic closure \bar{F} of F.

14 Let F be a field. Suppose for any finite extension E / F,
$p \mid[E: F]$, where p is an odd prime.
(1) Suppose E / F is a finite separable extension. Prove $I E: F]=p^{n}$ for some $n \in \mathbb{Z}^{\geq 0}$.
(2) Suppose F is not perfect. Prove $\operatorname{char}(F)=p$.
(3) Suppose E / F is any finite extension. Prove $[E: F]=p^{n}$.
(5) Suppose E / F is an algebraic extension. Let

$$
\begin{aligned}
& F^{a b}:=\left\{\alpha \in E \mid F_{[\alpha] /} F^{\text {is }} \text { Galois and }\right\} \\
& \mathrm{Gal}\left(\mathrm{FI}_{\mathrm{I} \alpha} / \mp\right) \text { is abelian }
\end{aligned}
$$

(1) Suppose $F \subseteq K \subseteq E, K / F$ is Galois, and $G a l(K / \mp)$ is abelian. Prove that $K \subseteq F^{a b}$.
(2) Prove that $F^{a b}$ is a field.
(3) Prove that $F^{a b} / F$ is Galois and $G a l\left(F^{a b} / F\right)$ is abelian.

6] Let $q=p^{n}$ where p is a prime and $n \in \mathbb{Z}^{+}$. Prove that any irreducible factor of $x^{q}-x+1 \in \mathbb{F}_{q}[x]$ has degree p.
(Hint. Suppose α is a zero of $x^{q}-x+1$ in a splitting field. Prove that $\alpha^{q^{q^{i}}}=\alpha-i$; and so $\alpha^{q^{p}}=\alpha$ and $\alpha^{q^{i}} \neq \alpha$ for $1 \leq i \leq p-1$. Hence $\mathbb{F}_{q}[\alpha]=\mathbb{E}_{q}$)
(7). Suppose F is a field, $f(x) \in F[x]$ is irreducible, and E is a splitting field of $f(x)$ over F. Suppose $\exists \alpha \in E$ st. $f(\alpha)=f(\alpha+1)=0$. Prove that
(1) Char $F=p>0$
(2) $\exists F \subseteq K \subseteq \equiv$ st. E / K is Galois and $[E: K]=p$.

8 Suppose F is a field and $\operatorname{char}(F) \neq 2$. Let $a_{1}, \ldots, a_{n} \in F^{x}$,

$$
H:=\left\langle a_{1}\left(F^{x}\right)^{2}, \ldots, a_{n}\left(F^{x}\right)^{2}\right\rangle \leq F^{x} /\left(F^{x}\right)^{2} \text {, and } E:=F\left[\sqrt{a_{1}}, \ldots, \sqrt{a_{n}}\right] \text {. }
$$

(1) Prove that E / F is a Galois extension.
(2) Let $G:=\operatorname{Gal}(E / F)$. Prove that G is an elementary abelian 2-group; that means $G \simeq(\mathbb{Z} / 2 \mathbb{Z})^{m}$ for some $m \in \mathbb{Z}^{20}$.
(3) Prove that H is an elementary abelian 2 -group.
(4) Let $T: G \times H \longrightarrow\{ \pm 1\} \simeq(\mathbb{Z} / 2 \mathbb{Z})$ be

$$
T\left(\sigma, a\left(\mathscr{F}^{x}\right)^{2}\right):=\sigma(\sqrt{a}) / \sqrt{a}
$$

Prove that T is a non-degenerate bilinear form; that means $T\left(\sigma_{1} \sigma_{2}, \bar{a}\right)=T\left(\sigma_{1}, \bar{a}\right) T\left(\sigma_{2}, \bar{a}\right)$,

$$
\begin{aligned}
& T\left(\sigma, \bar{a} \bar{a}^{\prime}\right)=T(\sigma, \bar{a}) T\left(\sigma^{\prime}, \bar{a}^{\prime}\right), \text { and } \\
& \left\{\begin{array}{l}
\forall \sigma \in G, T\left(\sigma, \overline{a_{0}}\right)=1 \Rightarrow \bar{a}_{0}=\overline{1} \\
\forall \bar{a} \in H, T\left(\sigma_{0}, \bar{a}\right)=1 \Rightarrow \sigma_{0}=i^{2} .
\end{array}\right.
\end{aligned}
$$

(5) Deduce that $G a l\left(F\left[\sqrt{a_{1}}, \ldots, \sqrt{a_{n}}\right] / F\right) \simeq\left\langle a_{1}\left(F^{x}\right)^{2}, \ldots, a_{n}\left(F^{x}\right)^{2}\right\rangle$.

Homework 9
Friday, March 9, 2018 12:01 PM
[9](1) In class we proved that $\operatorname{Aut}(\bar{F} / F) \simeq \underset{\substack{E_{F} \\ \text { finite } \\ \text { normal }}}{\lim } \operatorname{Ant}(E / F)$. And so $\operatorname{Aut}\left(\overline{\mathbb{I}_{P}} / \mathbb{I}_{P}\right) \simeq \underbrace{}_{n} \lim \operatorname{Aut}\left(\mathbb{\mathbb { F }}_{p} n / \mathbb{\mathbb { F }}_{p}\right)$. Deduce that $\operatorname{Gal}\left(\overline{\mathbb{F}}_{\mathrm{P}} / \mathbb{E}_{P}\right) \simeq \lim _{\leftarrow} \mathbb{Z} / n \mathbb{Z}:=\xi\left(a_{m}\right) \in \Pi(\mathbb{Z} / m \mathbb{Z}) \mid \forall d / m, a_{m} \stackrel{d}{\left.=a_{d}\right\} \text {. } . ~ . ~ . ~}$
(2) Prove that $\lim _{\leftarrow} \mathbb{Z} / n \mathbb{Z}$ has no non-trivial torsion element.
(3) Suppose $E \subseteq \overline{\mathbb{F}_{p}}$ is a subfield and $\left[\overline{\mathbb{F}_{p}}: E\right]<\infty$.

Prove that $E=\overline{\mathbb{E}_{p}}$.
110 Suppose E / F is a finite Galois extension. Suppose $\operatorname{Gal}(E / F)=\langle\sigma\rangle$. View σ as an element of $E_{F}(E)$. Let $n:=[E: F]$. For $a \in E^{x}$, let $l_{a}: E \rightarrow E, l_{a}(e)=a e$. view l_{a} as an element of End (E); and let $\tau_{a}:=l_{a} \cdot \sigma$. (1) Prove that $\tau_{a}^{i}=l_{a \sigma(a) \cdots \sigma^{i-1}(a)} \circ \sigma^{i}$.
(2) Prove that the minimal polynomial of τ_{a} (as an element of $\left.E_{F d_{F}}(E)\right)$ is $x^{n}-N_{E / /}(a)$ where $N_{E / F}(a)=\prod_{i=0}^{n-1} \sigma^{i}(a)$.
(3) Find rational canonical form of τ_{a}.

Homework 9
Friday, March 9, 2018
(4) Suppose, for $a \in E^{x}, N_{E_{F}}(a)=1$. Show τ_{a} has eigenvalue one, and deduce $\exists b \in E$ sit. $a=b / \sigma(b)$.
(5) Prove that $N_{E / F}: E^{x} \rightarrow F^{x}$ is a group homomorphism and

$$
\left.\operatorname{ker}\left(N_{E / 千}\right)=\xi b / \sigma(b) \mid b \in E^{x}\right\} .
$$

(6) Prove $\exists \alpha \in E$ sit. $\left\{\alpha, \sigma(\alpha), \sigma^{2}(\alpha), \ldots, \sigma^{n-1}(\alpha)\right\}$ is an F_{-} basis of E. (Hint. Use part (3) for $a=1$.)

