Homework 8

1. Prove that $\mathbb{Q}[\sqrt{2}]$ and $\mathbb{Q}[\sqrt{3}]$ are not isomorphic.
2. Prove that $\mathbb{E}_{p}(x, y) / \mathbb{E}_{p}\left(x^{p}, y^{p}\right)$ is not a simple extension.
3. Suppose $f(x) \in \mathbb{Q}[x]$ is irreducible, $\operatorname{deg} f=p$ is prime, and $f$ has $p-2$ real and 2 non-real zeros in $\mathbb{C}$. Let $K$ be a splitting field of $f(x)$ over $\mathbb{Q}$. Prove that $\operatorname{Ant}(K / \mathbb{Q}) \simeq S_{p}$.
(Hint. Since $\mathrm{K} / \mathrm{Q}$ is normal, complex conjugation gives us an element of Ant $(K / Q)$. Let $\alpha \in K$ be a zero of $f$. Then $P=\left[\mathbb{Q}[\alpha]: Q_{Q}\right]\left|[K: Q]=\left|\operatorname{Aut}\left(K / Q_{Q}\right)\right|\right.$. So $\operatorname{Aut}(K / Q)$ has an element of order p. Now think about the action of Ant $(K / Q)$ on the set of zeros of $f(x)$.)
4. Let $E / F$ be an algebraic extension. Let

$$
E_{\text {sep }}:=\left\{\alpha \in E \mid m_{\alpha, F}(x) \text { is separable }\right\} .
$$

Prove that (1) $E_{\text {sep }}$ is a field and $E_{\text {sep }} / F$ is a separable extension.
(2) If $\operatorname{char}(F)=p>0$, then $\forall \alpha \in E, \exists k \in \mathbb{Z}^{+}, m_{\alpha, E_{\operatorname{sep}}}(x)=X^{p^{k}} \alpha^{p^{k}}$ in particular $\alpha^{p^{k}} \in E_{\text {sep }}$.

Homework 8
Friday, March 9, 2018 12:05 AM
(Hint. Suppose $\alpha, \beta \in E_{\text {sep }}$. Let $L$ be a splitting field of $m_{\alpha, F}(x) m_{\beta, F}(x)$. over $F$. Argue that $L / \mp$ is separable. Deduce $\alpha \pm \beta, \alpha \beta^{ \pm 1} \in E_{\text {sep }}$. - $m_{\alpha, \mp}(x)=g_{\alpha}\left(x^{p^{k}}\right)$ where $g_{\alpha}(x) \in F[x]$ is irred. and separable. Deduce that $g_{\alpha}(x)=m_{\alpha^{p^{k}}, F}(x)$ and so $\alpha^{p^{k}} \in E_{\text {sep }}$.)
5. Suppose $E_{F}$ is a normal extension. Let $E_{\text {sep }}$ be as in Problem 4. Prove that $E_{\text {sep }} / F$ is a Galois extension.
6. Suppose $F \subseteq E \subseteq K$ is a tower of algebraic field extensions. Prove $K / F$ is separable $\Leftrightarrow K / E$ and $E / F$ are separable.
(Hint. Consider $K_{\text {sep }}$ as in problem 4. Deduce $K_{\text {sep }} \supseteq E$; and so $\forall \alpha \in K, m_{\alpha, K_{\text {sep }}}(x) \mid m_{\alpha, E}(x)$. Now use part (2) of problem 4.)
7. Suppose $\sigma \in \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$. Let $F:=F_{i x}(\sigma)$. Suppose $E / \mp$ is a finite Galois extension (for same subfield $E$ of an algebraic closure $\bar{Q}$ of $\mathbb{Q})$. Prove that $\operatorname{Gal}(E / F)$ is a finite cyclic group.
8. Let $E \subseteq \mathbb{C}$ be a splitting field of $x^{p}-2$ over $\mathbb{Q}$ where $p$ is an odd prime. Prove that $\operatorname{Gal}(E / Q) \simeq \mathbb{Z} / P \mathbb{Z} \times(\mathbb{Z} / P \mathbb{Z})^{x}$

