1. (a) Let F be a field of characteristic not 2. Let $a, b \in F^{x} \backslash F^{x^{2}}$. Prove that $[F[\sqrt{a}, \sqrt{b}]: F]=4$ if and only if $a b \notin F^{x^{2}}$. And, if $a b \in F^{x^{2}}$, then $F[\sqrt{a}, \sqrt{b}]=F[\sqrt{a}]$.
(b) Prove that $\sqrt[3]{2} \notin \mathbb{Q}\left[\sqrt{a_{1}}, \sqrt{a_{2}}, \cdots, \sqrt{a_{n}}\right]$ for some $a_{i} \in \mathbb{Q}^{x}$.
2. Let A be an F-algebra. Suppose $\operatorname{dim}_{F} A<\infty$ and A is an integral domain. Prove that A is a field.
(Hint. Consider $l_{a}: A \rightarrow A, l_{a}\left(a^{\prime}\right):=a a^{\prime}$ as an F-linear map.)
3. Let K / F be a field extension. Suppose $F \subseteq K_{1} \subseteq K$ and $F \subseteq K_{2} \subseteq K$ are subfields. And let $K_{1} K_{2}$ be the subfield of K that is generated by $K_{1} \cup K_{2}$. (Smallest subfield that contains both K_{1} and K_{2}).
(a) Suppose $\left[K_{1}: F\right]<\infty$ and $\left[K_{2}: F\right]_{<\infty}$. Prove that

$$
K_{1} K_{2}=\left\{\sum_{i=1}^{m} a_{i} b_{i} \mid a_{1}, \ldots, a_{m} \in K_{1}, b_{1}, \ldots, b_{m} \in K_{2}\right\} .
$$

(b) Suppose $\left[K_{i}: F\right]<\infty$ for $i=1,2$. Prove that there is an onto F-algebra homomorphism $\phi: K_{1} \otimes_{F} K_{2} \rightarrow K_{1} K_{2}, \phi(a \otimes b)=a b$.
(c) In the setting of (b), prove that
$K_{1} \otimes_{F} K_{2}$ is a field $\Leftrightarrow \phi$ is an isomorphism

$$
\Leftrightarrow\left[K_{1} K_{2}: F\right]=\left[K_{1}: F\right]\left[K_{2}: F\right] .
$$

(d) Prove $Q(\sqrt{2}) \otimes_{Q} \mathbb{Q}(\sqrt{3}) \simeq \mathbb{Q}(\sqrt{2}, \sqrt{3})$.

Homework 7
Friday, March 2, 2018 1:10 PM
4. Let $E \subseteq \mathbb{C}$ be a splitting field of $x^{p}-2$ over (Q) where p is an odd prime. (a) Show that $E=\mathbb{Q}\left[\zeta_{p}, \sqrt[p]{2}\right]$ where $\zeta_{p}=e^{\frac{2 \pi i}{P}}$. (b) Prove that $[E: Q]=p(p-1)$.
5. (a) Prove that $\mathbb{F}_{p^{m}} \subseteq \mathbb{E}_{p^{n}}$ if and only if m / n.
$\left(H_{\text {ind }} \cdot \Leftrightarrow\right.$ Let $\left[\mathbb{E}_{p^{n}}: \mathbb{E}_{p^{n}}\right]=d$. Then $p^{n}=\left(p^{m}\right)^{d}$.
\Leftrightarrow Show $\left.x^{p^{m}}-x \mid x^{p^{n}}-x.\right)$
(b) Let $f(x) \in \mathbb{\mathbb { F }}_{p}[x]$ be a manic irreducible polynomial of degree d. Prove that $f(x) \mid x^{p^{d}}-x$.
(Hint. $\exists E_{/ \mathbb{E}_{p}}$ st. $E=\mathbb{E}_{p}[\alpha]$ and $f(x)$ is the minimal poly. of α.) (c) Suppose $f(x) \in \mathbb{E}_{p}[x]$ is irreducible and $f(x) \mid x^{p^{n}}-x$. Prove that $\operatorname{deg}(f) \mid n$.
(Hint. Use part (a).)
(d) Let $P_{d}:=\xi f(x) \in \mathbb{E}_{p}[x] \mid \operatorname{deg} f=d$, irreducib $\}$ manic . Prove that

$$
\prod_{d \ln } \prod_{f(x) \in P_{d}} f(x)=x^{p}-x
$$

Deduce that $p^{n}=\sum_{d \ln } d\left|P_{d}\right|$.
(Remark. Using Möbius inversion, one can deduce that $\left|\mathbb{P}_{n}\right|=\sum_{d \ln } \mu\left(\frac{n}{d}\right) p^{d}$.)

Homework 7
6. Prove that $x^{p}-x+a$ is irreducible in $\mathbb{F}_{p}[x]$ for any $a \in \mathbb{F}_{p}^{x}$.
(Hint. Let E be a splitting field of $f(x)=x^{p}-x+a$, and $\alpha \in E$ be a zero of $f(x)$. Show that $f(x)=(x-\alpha)(x-\alpha-1) \cdots(x-\alpha-p+1)$. Suppose $\operatorname{deg}\left(m_{\alpha}\right)=d$. Looking at the cell. of x^{d-1}, deduce that $\left.m_{\alpha}=f.\right)$
7. Suppose $[F[\alpha]: F]$ is odd. Prove that $F[\alpha]=F\left[\alpha^{2}\right]$.
8. Let F be a field, and $f(x) \in F[x] \backslash F$. Suppose E is a splitting field of $f(x)$ over E.
(a) Prove that, if $\operatorname{gcd}\left(f, f^{\prime}\right) \neq 1$, then $F[x] /\langle f(x))^{\otimes}{ }_{F} E$ has a nonzero nilpotent element.
(b) Prove that, if $\operatorname{gcd}\left(f, f^{\prime}\right)=1$, then

$$
F I x I /\langle f(x)\rangle{ }^{\otimes} F \subseteq \underbrace{E \oplus \cdots \oplus E}_{\operatorname{deg} f}
$$

as F-algebras.

