11 Let R be a local unital commutative ring, and $\operatorname{Max}(R)=\{1+r\}$.
(a) Let M be a finitely generated R-module. Suppose $M=$ tr M.

Prove that $M=0$. (Hint. Let x_{1}, \ldots, x_{d} be a generating set of M. By assumption, $\exists a_{i j j} \in$ HF, $x_{i}=\sum_{j=1}^{d} a_{i j} x_{j}$. Hence $\left(I-\left[a_{1 j}\right]\right)\left[\begin{array}{c}x_{1} \\ \vdots \\ x_{d}\end{array}\right]=\overrightarrow{0}$. Show that $I-\left[a_{i j}\right] \in G L_{d}(R)$; and deduce $x_{i}=\sigma$; and so $M=0$)
(b) Let M be a finitely generated R-module. Let $d(M)$ be the minimum number of generators of M. Prove that

$$
d(M)=\operatorname{dim}_{(R / H+1)} R / /_{1+} \otimes_{R} M .
$$

(c) Let M be a finitely generated projective R-module. Prove that M is free. (Hint. Let $d(M)=d$. Then $0 \rightarrow N \rightarrow R^{d} \rightarrow M \rightarrow 0$
 $\stackrel{?}{\Rightarrow} \mathrm{~N}=0$.)
2. Let R be a unital commutative ring.
(a) Let S be a multiplicatively closed subset of R. Prove that

Homework 6
Tuesday, February 20, 2018 10:40 PM
$S^{-1} R Q_{R} M \simeq S^{-1} M$ as $S^{-1} R$-modules.
(b) Suppose R_{1} and R_{2} are unital commutative rings, and $\phi: R_{1} \rightarrow R_{2}$ is a ring homomorphism. Prove that if M is a flat R_{1}-module, then $R_{2} \otimes_{R_{1}} M$ is a flat R_{2}-module.
(c) Prove that, if M is a fat R-mod, then $S^{-1} M$ is a flat $S^{-1} R$-module; in particular if M is a flat R-module, then \forall ip $\in \operatorname{Spec}(R), M_{\text {sp }}$ is a flat R_{p}-module.
(d) Prove $S^{-1}\left(M_{1} \otimes_{R} M_{2}\right) \simeq S^{-1} M_{1} \otimes_{S^{-1}} S^{-1} M_{2}, \frac{x_{1} \otimes x_{2}}{1} \mapsto \frac{x_{1}}{1} \otimes \frac{x_{1}}{1}$.
(e) Prove that, if M_{ϕ} is a flat $R_{\psi-\text {-module }}$ for any $p \in S \operatorname{spec}(R)$, then M is flat.
CHink. Suppose $0 \rightarrow N_{1} \rightarrow N_{2} \rightarrow N_{3} \rightarrow 0$ is S.E.S. Shea

$$
0 \rightarrow M_{p p} \otimes\left(\mathbb{N}_{1}\right)_{\phi} \rightarrow M_{p p} \otimes\left(\mathbb{N}_{2}\right)_{p} \rightarrow M_{p} \otimes\left(\mathbb{N}_{3}\right)_{\phi} \rightarrow 0 \text { is S.E.S.; }
$$

deduce $0 \rightarrow\left(M \otimes N_{1}\right)_{\phi} \rightarrow\left(M \otimes N_{2}\right)_{p} \rightarrow\left(M \otimes N_{3}\right)_{\psi} \rightarrow 0$ is S.E.S.
Use HW4, Problem 1 (c) and (d).)
3. Suppose R is a unital commutative local ring. Suppose M and N are two finitely generated R-modules and $M \otimes_{R} N=0$. Prove that either $M=0$ or $N=0$ (Hint. Use an idea similar to (1.(b).)

Suppose R is a unital ring and $0 \longrightarrow M_{1} \xrightarrow{f_{1}} M_{2} \xrightarrow{f_{2}} M_{3} \longrightarrow 0$ is a short exact sequence of right R-modules. Suppose M_{3} is flat. Prove, for any left $R-\bmod N$,

$$
0 \rightarrow M_{1} \otimes_{R} N \xrightarrow{f_{1} \otimes i d} M_{2} \otimes_{R} N \xrightarrow{f_{2} \otimes i d} M_{3} \otimes_{R} N \rightarrow 0
$$

is a S.E.S.
(Hint. Notice that there is a S.E.S. $\longrightarrow K \xrightarrow{j} F \xrightarrow{P} N \longrightarrow 0$ where F is free. Then show that we get the following Commuting diagram where all the rows and columns are exact:

-)

5 Suppose R is a unital ring and $0 \longrightarrow M_{1} \xrightarrow{f_{1}} M_{2} \xrightarrow{f_{2}} M_{3} \longrightarrow 0$ is a S.E.S. of right R-modules. Suppose M_{3} is flat. Prove that M_{1} is flat if and only if M_{2} is flat.
(Hint. Use 4.)
16. Suppose D is an integral domain, and M is a D-module.
(a) Prove Free \Rightarrow Projective \Rightarrow flat \Rightarrow torsion-free.

| (proved | (proved
 in class) |
| :---: | :---: | | in class) |
| :--- | | prove |
| :--- |
| Cony this |
| pant |

(b) If D is a PID and M is $f g$., then all the above properties are equivalent.
(c) Prove that \mathbb{Q} is NOT a projective \mathbb{Z}-module, but it is a flat \mathbb{Z}-module.
77. Suppose $0 \rightarrow K \rightarrow P \xrightarrow{f} M \rightarrow 0$ and $0 \longrightarrow K^{\prime} \rightarrow P^{\prime} \xrightarrow{f^{\prime}} M \rightarrow 0$ are S.E.S. Suppose P and P^{\prime} are projective. Prove
(Hint. $0 \rightarrow K \rightarrow P \xrightarrow{+} \stackrel{\uparrow}{M} \rightarrow 0$

$$
\left.L:=\left\{\left(x, x^{\prime}\right) \in P \oplus P^{\prime} \mid f(x)=f^{\prime}\left(x^{\prime}\right)\right\}\right)
$$

 (this is called the fiber product

