1. Let $D$ be a PID; let $F$ be its field of fractions. Suppose $A \in M_{n, m}(D)$. Let $\underline{\operatorname{ker}(A)}(F):=\left\{v \in F^{m} \mid A v=0\right\}$ and $\underline{\operatorname{ker}(A)}(D):=\left\{v \in D^{m} \mid A v=0\right\}$, and $\underline{\operatorname{lm}(A)}(F):=\left\{A v \in F^{n} \mid v \in F^{m}\right\}$ and $\quad \underline{\operatorname{lm}(A)}(D):=\left\{A v \in D^{n} \mid v \in D^{m}\right\}$.
(a) Prove that $D^{m} / \underline{\operatorname{ker}(A)(D)}$ is a free $D$-mod; and deduce $D^{m}$ has a $D$-basis $x_{1}, \ldots, x_{m}$ st.

$$
\underline{\operatorname{ker}(A)}(D)=D x_{r+1} \oplus \cdots \oplus D x_{m}, \text { where }
$$

$r=\operatorname{rank}$ of $A$ as a matrix in $M_{n, m}(F)$.
(b) Let $r$ be as in part (a). Prove that $\exists a \operatorname{D}$-basis $y_{1}, \ldots, y_{n}$ of $D^{n}$ and $d_{1}, \ldots, d_{r} \in D$ st.

$$
d_{1}\left|d_{2}\right| \cdots \mid d_{r} \text { and } \underline{\operatorname{lm}(A)}(D)=D d_{1} y_{1} \oplus \cdots \oplus D d_{r} y_{r} .
$$

(c) Let $x_{i}$ 's be as in part (a). Prove that $\exists$ a $D$-basis $\left\{x_{1}^{\prime}, \ldots, x_{r}^{\prime}\right\}$ of $D x_{1} \oplus \cdots \oplus D x_{r}$ st. $A x_{i}^{\prime}=d_{i} y_{i}$.
(d) Prove that $\left[x_{1}^{\prime} \cdots x_{r}^{\prime} x_{n+1} \cdots x_{m}\right] \in G L_{m}(D),\left[y_{1} \cdots y_{n}\right] \in G L_{n}(D)$, and $A\left[\begin{array}{llll}x_{1}^{\prime} & \cdots & x_{r}^{\prime} & x_{r+1}\end{array} \cdots x_{m}\right]=\left[\begin{array}{lll}y_{1} & \cdots & y_{n}\end{array}\right]\left[\begin{array}{cc:c}d_{1} & 0 \\ \hdashline 0 & 0\end{array}\right]$. Hence $A=\gamma_{1}\left[\begin{array}{c:c}d_{1} & 0 \\ \hdashline 0 & 0\end{array}\right] \begin{gathered}\gamma_{2}, \text { where } \gamma_{1} \in G L_{n}(D), \gamma_{2} \in G L_{m}(D), \\ d_{1}|\cdots| d_{r} .\end{gathered}$
(This is called a Smith form of A.)

Homework 5
Monday, February 5, 2018
2. Let $A \in M_{n}(\mathbb{Z})$; and $M_{A}:=\mathbb{Z}^{n} / \underline{\operatorname{lm}(A)(\mathbb{Z})}$.
(a) Show that $M_{A}$ is finite if and only if $\operatorname{det}(A) \neq 0$.
(b) Suppose $\operatorname{det}(A) \neq 0$. Prove that $\left|M_{A}\right|=|\operatorname{det}(A)|$.
(Hint. Suppose $A=\gamma_{1}\left[\begin{array}{llll}d_{1} & & & \\ & d_{m_{0}} & \\ & & & \\ & & & 0\end{array}\right] \gamma_{2}$ is a Smith form of $A$.
Show that $M_{A} \simeq \mathbb{Z}^{n-m} \oplus \oplus_{i=1}^{m} \mathbb{Z} / d_{i} \mathbb{Z}$ )
3. Let $A \in M_{n}(k[x])$. Suppose $\operatorname{det}(A) \neq 0$. Prove that

$$
\operatorname{dim}_{k}\left(k[x]^{n} / \underline{\operatorname{lm}(A)(k[x])}\right)=\operatorname{deg}(\operatorname{det}(A))
$$

(Here $k$ is a field; and $\left.\underline{\operatorname{lm}(A)}(k I x):=\{A v \mid v \in k I x]^{n}\right\}$.)
 of $A$. Show that $m=n$ and

$$
k[x]^{n} / \operatorname{lm}(A)(k[x]) \simeq{\left.\underset{i=1}{n} k[x] /\left\langle d_{i}(x)\right\rangle\right)}
$$

4. Let $k$ be a field, and $A \in M_{n}(k)$. Suppose

$$
x I-A=\gamma_{1}\left[\begin{array}{lll}
f_{1}(x) & & \\
& \ddots & \\
& & f_{n}(x)
\end{array}\right] \gamma_{2}
$$

is a Smith form of $x I_{-} A \in M_{n}(k[x])$; that means $\gamma_{1}, \gamma_{2} \in G L_{n}(k[x])$ and $f_{1}(x)|\ldots| f_{n}(x)$. Suppose $m$ is the

Homework 5
largest integer such that $\operatorname{deg} f_{m-1}=0$. Prove that $\left[\begin{array}{lll}c\left(f_{m}\right) & & \\ & \ddots & \\ & & c\left(f_{n}\right)\end{array}\right]$ is the rational canonical form of $A$.
[Hint. (1) $k[x]_{(x I-A) k[x]^{n}}^{\sim k[x] /\left\langle f_{1}(x)\right\rangle} \oplus \cdots \oplus k[x] /\left\langle f_{n}(x)\right\rangle$
(look at Hint of the previous problem).

$$
=k[x] /_{\left.\left\langle f_{m}(x)\right\rangle^{\oplus} \cdots \oplus k[x] /<f_{n}(x)\right\rangle}
$$

as $k[x]$-modules.
(2) Argue why it is enough to show $k^{n}$ as $k[x]-\bmod$ with action $x \cdot v:=A v$ is isomorphic to $k[x]^{n} /(x I-A) k[x]^{n}$.
(3) Let $\phi: k[x]^{n} \rightarrow k^{n}$ be

$$
\phi\left(\sum_{i=0}^{m} x^{i} v_{i}\right):=\sum_{i=0}^{m} A^{i} v_{i} \quad\left(\text { where } v_{i} \in k^{n}\right)
$$

Show $\phi$ is a $k[x]$-mod. homomorphism ; and

$$
\left.\operatorname{ker} \phi=(x I-A) k[x]^{n} .\right]
$$

5. Let $k$ be a field and $A \in M_{n}(k)$. Prove that $A$ is similar to its transpose $A^{t}$.
(Hint. Use rational canonical form and Problem 4.)

Homework 5
Wednesday, February 7, 2018
6. In this problem, you will prove the following property for an integral domain, a unital commutative Noetherian ring, an arbitrary unital commutative ring. (The integral domain case is not needed to prove the general case; it is included because there is an easier argument in that case. So you do not need to write proof of part (a).)

Suppose $M$ is an $A$-module and $d(M)=\operatorname{rank}(M)=n$ where $d(M)$ is the min number of generators and $\operatorname{rank}(M)$ is
(*) the maximum number of linearly independent elements.

Then $M \simeq A^{n}$.
(a) Prove (*) when $A$ is an integral domain.
(b) Prove ( $*$ ) when $A$ is a Noetherian unital commutative ring.
(c) Prove (*) for an arbitrary unital commutative ring.
(Hint. For all the parts start with: $\exists \phi, 45$ st. $A_{R}^{n} \xrightarrow{\phi^{\text {onto }}} M$
Using Hint of problem $7(c)$ from last week, $\exists \psi^{\prime}: A^{n} \subset A^{n} \xrightarrow[A^{n}]{44^{\prime}-2} \int_{24}$ infective

Homework 5
Use this to deduce $\psi^{\prime}\left(A^{n}\right) \oplus \operatorname{ker}(\phi) \subseteq A^{n}$. (I) In all the parts, you show $\operatorname{ker}(\phi)=0$.

For part (a), use (I) and rank $\left(A^{n}\right)$ to conclude er $\phi=0$.
For part (b), use (I) and an argument similar to hint of problem Fa) from last week.

For part $(c)$, suppose $\left(a_{1}, \ldots, a_{n}\right) \in \operatorname{ker}(\phi) \backslash\{0\}$ and $\psi^{\prime}\left(e_{i} \cdot\right)=\left(a_{i 1}, \ldots, a_{i n}\right)$ and use (I) and an argument similar to hint of problem $7(b)$ from last week.) 7. A matrix $N$ is called nilpotent if $\exists l \in \mathbb{Z}^{+}, N^{l}=0$.
(a) Suppose $k$ is a field and $N \in M_{m}(k)$ is nilpotent. Prove that $N^{m}=0$.
(b) Find two nilpotent matrices $N_{1}$ and $N_{2}$ that are NOT similar and have equal minimal polynomials.
(c) Prove that $N_{1} \sim N_{2}$ if and only if, for any $j \in \mathbb{Z}^{+}$,

$$
\operatorname{dim} \operatorname{ker}\left(N_{1}^{j}\right)=\operatorname{dim} \operatorname{ker}\left(N_{2}^{j}\right) .
$$

Homework 5
Friday, February 9, 2018
8. Suppose $\left\{M_{i}\right\}_{i \in I}$ and $N$ are R-modules. Prove that
(a) $\operatorname{Hom}_{R}\left(\underset{i \in I}{\oplus} M_{i}, N\right) \simeq \prod_{i \in I} \operatorname{Hom}_{R}\left(M_{i}, N\right)$
(b) $\operatorname{Hom}_{R}\left(N, \prod_{i \in I} M_{i}\right) \simeq \prod_{i \in I} \operatorname{Hom}_{R}\left(N, M_{i}\right)$.
(as abelian groups).
9. Suppose $M$ is a simple $R$-mod. and let $D:=E_{R} d_{R}(M)$.
(a) Prove that End $\left(M^{n}\right) \simeq M_{n}(D)$ as rings.
(b) Suppose $M_{i}$ 's are simple $R$-modules, and $M_{i} \not \nsim M_{j}$ as $R-\bmod$. (b-1) For $\phi \in$ End $\left(\bigoplus_{i=1}^{m} M_{i}^{n_{i}}\right)$, prove that

$$
\phi\left(M_{i}^{n_{i}}\right) \subseteq M_{i}^{n_{i}}
$$

(b-2) Prove that End $\left(\bigoplus_{i=1}^{m} M_{i}^{n_{i}}\right) \simeq M_{n_{1}}\left(D_{1}\right) \oplus \cdots \oplus M_{n_{m}}\left(D_{m}\right)$ as rings where $D_{i}=\operatorname{End}_{R}\left(M_{i}\right)$.
(c) Suppose $R \simeq M_{1}^{n_{1}} \oplus \cdots \oplus M_{m}^{n_{m}}$ as $R-\bmod$., where $M_{i}^{\prime}$ 's are simple R-modules and $M_{i} \nsim M_{j}$. Prove that

$$
R \simeq M_{n_{1}}\left(D_{1}^{O P}\right) \oplus \cdots \oplus M_{n_{m}}\left(D_{m}^{\sigma}\right)
$$

where $D_{i}=\operatorname{End}_{R}\left(M_{i}\right)$ are division rings.

Homework 5
Friday, February 9, 2018
(Remark. Problem 9 is a part of Artin-Wedderburn's theorem.
Using Problem 8, in HW1 of math 200 a, you can show that $\mathbb{C} G \simeq M_{1}^{n_{1}} \oplus \cdots \oplus M_{m}^{n_{m}}$ as $\mathbb{C} G$-modules if $G$ is a finite $g p$. And so by the above problem and showing $D_{i}=\mathbb{C}$, you get $\mathbb{C} G \simeq M_{n_{1}}(\mathbb{C}) \oplus \cdots \oplus M_{n_{m}}(\mathbb{C})$; this gives us a lot of information on irreducible characters of $G$. (it is the starting point of representation theory of finite groups).)
10. (a) Let $\phi \in \operatorname{Hom}\left(\prod_{i=1}^{\infty} \mathbb{Z}, \mathbb{Z}\right)$; let $e_{j} \in \prod_{i=1}^{\infty} \mathbb{Z}$ be $e_{j}(i)=\left\{\begin{array}{l}0 \text { icj } \\ 1 \quad i=j\end{array}\right.$ Suppose $\phi\left(e_{j}\right)=n_{j} \neq 0$ for any $j$.

Choose a sequence of positive integers $1=k_{1}<k_{2}<\ldots \leq t$.
( $)^{k_{j+1}} \nmid k_{j}!n_{j}$. Consider $\sum:=\left\{\left(a_{i}\right)_{i=1}^{\infty} \mid a_{i} \in\left\{0, k_{i}!\right\}\right\}$.
$(a-1)$ Argue why $\exists\left(a_{i}\right) \neq\left(a_{i}^{\prime}\right) \in \sum$ st. $\phi\left(a_{i}\right)=\phi\left(a_{i}^{\prime}\right)$.
(a-2) Suppose $i_{0}^{\prime}$ is the first index where $a_{i_{0}} \neq a_{i_{0}^{\prime}}^{\prime}$.
Show $\phi\left(\left(a_{i_{0}}-a_{i_{0}^{\prime}}^{\prime}\right) e_{i_{0}}\right) \notin k_{i_{0}+1} \mathbb{Z} \quad$ (based on : $*$ )
and $\quad \phi\left(\left(a_{i-}-a_{i_{0}}^{\prime}\right) e_{i_{0}}\right) \in k_{i_{0}^{\prime}+1} \mathbb{Z} \quad$ (based on $)$ And get a contradiction.

Homework 5
Friday, February 9, 2018 3:28 PM
(b) Use part (a) to deduce $\operatorname{Hom}\left(\prod_{\mathbb{Z}}^{\infty} \mathbb{Z}, \mathbb{Z}\right) \xrightarrow{\sim} \bigoplus_{i=1}^{\infty} \mathbb{Z}$,

$$
\phi \longmapsto\left(\phi\left(e_{i}\right)\right)
$$

is an isomorphism.
(c) Use part $(b)$ to show $\prod_{i=1}^{\infty} \mathbb{Z}$ is NOT a free abelian group.
(d) Use part (b) to show, $\operatorname{Hom}_{\mathbb{Z}}\left(\prod_{i=1}^{\infty} \mathbb{Z}{\underset{\bigoplus}{i=1}}_{\infty}^{\mathbb{Z}}, \mathbb{Z}\right)=0$.
11. Suppose $R$ is a Noetherian ring and $\phi: R \rightarrow R$ is a surjective ring homomorphism. Prove that $\phi$ is an isomorphism.
(Hint. consider $\operatorname{ker}\left(\phi^{i}\right)$ )
12. Suppose $A$ is a unital commutative ring.
(a) Suppose $a \triangleleft A$. Let $\sqrt{\pi}:=\left\{a \in A \mid \exists n \in \mathbb{Z}^{+}, a^{n} \in \pi\right\}$.

Show that $\sqrt{\pi} \triangleleft A$ and $\sqrt{\pi}=\bigcap_{x p \operatorname{spec}(A)} \Phi$.

$$
\pi \leq \psi
$$

(Hint. Show $\sqrt{\pi} / \pi=$ Nil $(A / \pi)$ and look at lecture note 27, math 200 a.)

Homework 5
Friday, February 9, 2018 8:02 PM
(b) Suppose $\left\langle f_{1}, \ldots, f_{n}\right\rangle=A$ and $m_{1}, \ldots, m_{n} \in \mathbb{Z}^{+}$. Prove $\left\langle f_{1}^{m_{1}}, \ldots, f_{n}^{m_{n}}\right\rangle=A$. (Hint. Use $\sqrt{\pi} \triangleleft A$.)
(c) Suppose $\left\langle f_{1}, \ldots, f_{n}\right\rangle=A$. Let $M$ be an $A$-module. Suppose $N \subseteq M$ is a submod, and $S_{f_{i}}^{-1} N=S_{f_{i}}^{-1} M$ for $1 \leq i \leq n$ where $S_{f_{i}}=\left\{1, f_{i}, f_{i}^{2}, \ldots\right\}$.

Prove that $N=M$. (Hint. Let $x \in M$. Show $x \in N!$ )
(d) Suppose $\left\langle f_{1}, \ldots, f_{n}\right\rangle=A$. Let $M$ be an $A$-module. Suppose $S_{f_{i}}^{-1} M$ is a finitely generated $A_{f_{i}}-\bmod$. Prove that $M$ is a finitely generated $A$-mod. (Hint Use (c))
(e) Suppose $\left\langle f_{1}, \ldots, f_{n}\right\rangle=A$, and $A_{f_{i}}$, 's are Noetherian. Prove that $A$ is Noetherian. (Hint. Let $\pi \triangleleft A$, and use (d).)

