Homework 4
Thursday, February 1, 2018 2:59 PM
Reading Suppose A is a unital commutative ring, $S \subseteq A$ is muttipliatively before
Problem closed, and M is an A-module. We can localize M with respect to S as we did A. Namely on $M \times S$ we define the following relation:

$$
\left(m_{1}, s_{1}\right) \sim\left(m_{2}, s_{2}\right) \Longleftrightarrow \exists s \in S \text { st. } s .\left(s_{1} \cdot m_{2}-s_{2} \cdot m_{1}\right)=0 .
$$

Convince yourself that \sim is an equivalency relation on $M \times S$, and let $\frac{m}{s}:=[(m, s)]$, and $S^{-1} M:=\left\{\left.\frac{m}{s} \right\rvert\, m \in M, s \in S\right\}$.

Let $\frac{m_{1}}{s_{1}}+\frac{m_{2}}{s_{2}}:=\frac{s_{2} m_{1}+s_{1} \cdot m_{2}}{s_{1} s_{2}}$; convince yourself that it is a well-defined operation and $\left(S^{-1} M,+\right)$ is an abelian group.
For $\frac{a}{s} \in S^{-1} A$ and $\frac{m}{s^{\prime}} \in S^{-1} M$, let $\frac{a}{s} \cdot \frac{m}{s^{\prime}}:=\frac{a \cdot m}{s s^{\prime}}$.
Convince yourself that it is well-defined, and it makes $S^{-1} M$ an $S^{-1} A-\bmod$.

For $x \in \operatorname{Spec}(A)$, are let $M_{p}:=S_{p}^{-1} M$ where $S_{\phi}:=A \backslash x$.

Homework 4
Thursday, February 1, 2018 3:22 PM

1. (a) Suppose M is an A-mod. Prove that

$$
\begin{aligned}
M=0 & \Longleftrightarrow \forall \text { ppespec}(A), M_{\not p}=0 \\
& \Longleftrightarrow \forall{ }_{\text {TH F }} \in \operatorname{Max}(A), M_{H H}=0
\end{aligned}
$$

(Hint. Clearly the only non-trivial part is: \forall Yr $\in \operatorname{Max}(A), M_{\text {Att }}=0 \stackrel{?}{\Rightarrow} M=0$. For $x \in M$, consider $a n n(x)$; and show it cannot be proper.)
(b) Let $\phi: M_{1} \rightarrow M_{2}$ be an A-mod homomorphism. And S is a mutiplicatively closed subset of A. Let $S^{-1} \phi: S^{-1} M_{1} \rightarrow S^{-1} M_{2}$,

$$
\left(s^{-1} \phi\right)\left(\frac{m_{1}}{s}\right):=\frac{\phi\left(m_{1}\right)}{s} .
$$

Show that $S^{-1} \phi$ is a well-defined $S^{-1} A$-mod. homomorphism. (For $p \in \operatorname{Spec}(A)$, we let $\phi_{\phi}:=S_{\phi-1}^{-1} \phi$ where $S_{p}:=A \backslash q$.)
Suppose M_{1} is a submodule of M_{2}. Observe that $S^{-1} M_{1}$ is a submod of $S^{-1} M_{2}$. Convince yourself that $S^{-1} M_{2} / S^{-1} M_{1} \simeq S^{-1}\left(M_{2} / M_{1}\right)$.
(c) Let $\phi: M_{1} \rightarrow M_{2}$ be an A-mod. homomorphism. Prove that ϕ is infective $\Longleftrightarrow \forall+H \in \operatorname{Max}(A), \phi_{\text {Her }}$ is infective.
(Hint. Show that $\operatorname{ker}\left(\phi_{\text {HE }}\right)=(\operatorname{ker}(\phi))_{\text {TH F }}$.)
(d) Show that ϕ is surjective $\Leftrightarrow \forall$ THE $\operatorname{Max}(A), \phi_{\text {tr }}$ is surjective
(Hint. Consider the co-kernel of ϕ; that means M_{2} / I_{m} And co-kernel of $\phi_{\text {Ir }}$'s.)

Reading before problem. Suppose A is a unital commutative ring and S is a multiplicatively closed set. As we have seen in problem 1, if $\pi \triangleleft A$, then $S^{-1} \pi \triangleleft S^{-1} A$; and $S^{-1}(A / \pi) \simeq S^{-1} A / S^{-1} \pi$ as $S^{-1} A_{\text {-modules. Convince yourself that this implies }}$

$$
\bar{S}^{-1}(A / \pi) \simeq S^{-1} A / S^{-1} \pi
$$

as rings where $\bar{S}=\{s+\sigma \in A / \pi \mid \quad s \in S\}$.
2.(a) Suppose $\tilde{\pi}$ is an ideal of $S^{-1} A$. Let

$$
\pi:=\left\{a \in A \left\lvert\, \frac{a}{1} \in \tilde{\sigma}\right.\right\} .
$$

Prove that $\pi \triangleleft A$ and $\tilde{\pi}=S^{-1} \pi$.
(b) Let $O_{S}:=\{\psi \in \operatorname{Spec}(A) \mid \psi \cap S=\varnothing\}$. Let $\phi: O_{S} \rightarrow \operatorname{Spec}\left(S^{-1} A\right), \phi(\phi):=S^{-1} \psi$, and $\psi: \operatorname{spec}\left(S^{-1} A\right) \rightarrow O_{S}, \Psi(\tilde{\mathscr{F}}):=\left\{a \in A \left\lvert\, \frac{a}{1} \in \widetilde{\mathscr{\phi}}\right.\right\}$.

Prove that ϕ and 4 are well-defined and they are inverse of each other. (and so there is a bijection between prime ideals of $S^{-1} A$ and prime ideals of A that

Homework 4
do not intersect S.)
(Explanation. You have to show S^{-1} ip is prime if ip is.
Think about $S^{-1} A / S^{-1} \frac{1}{q} \simeq S^{-1}(A / q) \longrightarrow$ field of fractions of $A / 4$

- Next you have to show

$$
\left.\begin{array}{l}
\psi_{1} \psi_{2} \in \operatorname{Spec}(A) \\
S^{-1} \psi_{1}=S^{-1} \psi_{2}
\end{array}\right\} \stackrel{?}{\Longrightarrow} \phi_{1}=\psi_{2} . \quad
$$

3. (a) Suppose A is a unital commutative ring and tr ΔA.

Prove that $\operatorname{Max}(A)=\{\pi t\}$ if and only if $A^{x}=A \backslash T 1$.
(Such a ring is called a local ring.)
(b) Suppose A is a unital commutative ring. Prove that $A_{p p}$ is a local ring for any sp $\operatorname{Spec}(A)$.

Reading before problem Determinant can be defined for matrices with entries in a unital commutative ring: $\operatorname{det}\left[a_{i j}\right]:=\sum_{\sigma \in S_{n}} \operatorname{sgn}(\sigma) \prod_{i=1}^{n} a_{i \sigma(i)}$, where S_{n} is the symmetric group, and $\operatorname{sgn}: S_{n} \longrightarrow\{ \pm 1\}$ is the sign
group homomorphism. Similar to the $n \times n$ matrices over a field, one can define minors of $x=\left[a_{i j}\right]$.

The l, k-minor of $x=\left[a_{i, j}\right]$ is the determinant of the $(n-1) \times(n-1)$ matrix $x(l, k)$ that one gets after removing the $l^{\text {th }}$ row and the $k^{\text {th }}$ column.

Similar to Cramer's rule, we can define the adjunct matrix
 $\operatorname{adj}(x)$ of x. The (i, j)-entry of $\operatorname{adj}(x)$ is $(-1)^{i+j} \operatorname{det} x(j, i)$. Here are the main properties of $\operatorname{det}: M_{n}(A) \longrightarrow A$.
(1) Let is mutti-linear with respect to columns.
(1') let is multi-linear with respect to rows.
(2) $\operatorname{det}(I)=1$.
(3) If x has two identical rows, then $\operatorname{det} x=0$
(3') If x has two identical columns, then $\operatorname{det} x=0$
(4) $\operatorname{adj}(x) \cdot x=x \cdot \operatorname{adj}(x)=\operatorname{det}(x) I$.
(5) $\forall x, y \in M_{n}(A), \quad \operatorname{det}(x y)=\operatorname{det}(x) \operatorname{det}(y)$.

Homework 4
Thursday, February 1, 2018
4. (a) Suppose A is a unital commutative ring, and $G L_{n}(A)=M_{n}(A)^{x}$. Prove that $x \in G L_{n}(A) \Leftrightarrow \operatorname{det} x \in A^{x}$.
(b) Suppose A is a unital commutative ring and $\operatorname{Max}(A)=\{1 \pi r\}$. Suppose $\phi: A^{n} \longrightarrow A^{n}$ is an $A-\bmod$. homomorphism and let $x_{\phi} \in M_{n}(A)$ be its associated matrix. Convince yourself that ϕ is a bijection if and only if $x_{\phi} \in G L_{n}(A)$.

Prove the following statements are equivalent:
(1) $\phi: A^{n} \rightarrow A^{n} \quad$ is surjective.
(2) $\bar{\phi}:(A / \text { Hr })^{n} \rightarrow(A / \text { HF })^{n}$ is bijective, where $\bar{\phi}$ is induced by ϕ.
(3) $\phi: A^{n} \rightarrow A^{n}$ is bijective.
(Hint. Show $(1) \Leftrightarrow(2)$ and $(2) \Leftrightarrow(3)$. Use linear algebra to show $\operatorname{det}(\Leftrightarrow) \notin$ 作.)
(c) Suppose A is a unital commutative ring, and $\phi: A^{n} \rightarrow A^{n}$ is an A-mod. homomorphism. Prove that
ϕ is surjective $\Leftrightarrow \phi$ is bijective.
(Hint. Use Problem 1.c, 1.d, 3.6)

Homework 4
5. Suppose A is a unital commutative ring, and $\phi: A^{n} \rightarrow A^{m}$ is surjective. Prove that $n \geq m$.

Reading before problem A module M is called Noetherian if the following (equivalent) statements hold:
(a) Any chain $\left(N_{i}\right)_{i \in I}$ of submodules of M has a maximum.
(b) Any non-empty set \sum of submodules of M has a maximal element.
(c) M satisfies the ascending chain condition (a.c.c.); that means if $N_{1} \subseteq N_{2} \subseteq N_{3} \subseteq \cdots$ are submodules of M, then $\exists i_{0}$ st.

$$
N_{i_{0}}=N_{i_{0}+1}=\cdots .
$$

(d) All the submodules of M are finitely generated.

Go over Lecture 28 of math 200 a and see that similar arguments imply $(a),(b),(c)$, and (d) are equivalent.

Observe that A is a Noetherian ring if and only if A is a Noetherian A-mod.

Homework 4
Thursday, February 1, 2018 10:36 PM
6. (a) Suppose N is a submodule of M. Prove that M is Noetherian $\Longleftrightarrow N$ and M / N are Noetherian.
(b) Suppose A is a Noetherian ring, and M is a finitely generated A-module. Prove that M is Noetherian.
7. (a) Suppose A is a Noetherian unital commutative ring, and $\phi: A^{n} \rightarrow A^{m}$ is infective. Prove that $n \leq m$.
(Hint. If not, $\phi\left(A^{n}\right) \oplus A^{n-m} \subseteq A^{n}$

$$
\text { explain } \begin{cases}\Rightarrow & \phi^{2}\left(A^{n}\right) \oplus \phi\left(A^{n-m}\right) \oplus A^{n-m} \subseteq A^{n} \Rightarrow \cdots \\ & \phi^{i}\left(A^{n}\right) \oplus \phi^{i-1}\left(A^{n-m}\right) \oplus \phi^{i-2}\left(A^{n-m}\right) \oplus \cdots \oplus A^{n-m} \subseteq A^{n} . \\ \Rightarrow & \left.A^{n-m} \nsubseteq A^{n-m} \oplus \phi\left(A^{n-m}\right) \nsubseteq \cdots \subseteq A^{n} .\right)\end{cases}
$$

(b) Suppose A is a unital commutative ring, and $\phi: A^{n} \rightarrow A^{m}$ is infective. Prove that $n \leq m$.
(Hint. Suppose $x_{\phi}=\left[a_{i j}\right]$ is the associated matrix; and let A_{0} be the subring of A which is generated by $a_{i j}$'s. Consider $\left.\phi\right|_{A_{0}^{n}}$, discuss why $\left.\phi\right|_{A_{0}^{n}}: A_{0}^{n} \longrightarrow A_{0}^{m}$ is infective. Use Hilbert's basis theorem and part (a).)

Homework 4
Thursday, February 1, 2018 11:01 PM
(c) Suppose A is a unital commutative ring, and M is a finitely generated A-module. Let
$d(M):=$ minimum number of generators of M, and rank $(M):=$ maximum number of linearly independent elements of M.

Prove that $\operatorname{rank}(M) \leq d(M)$.
(Hint. Let $d(M)=n$ and $\operatorname{rank}(M)=m$. Then
$\exists \phi: A^{n} \longrightarrow M$ surjective and $\exists \psi: A^{m} \rightarrow M$ infective.
So, for any $1 \leq i \leq m, \exists v_{i} \in A^{n}$ s.t. $\phi\left(v_{i}\right)=\psi\left(e_{i}\right)$.
Let $\theta\left(e_{i}\right):=v_{i}$ and extend it to an A-mod. hamamarphism $\theta: A^{m} \longrightarrow A^{n}$ st.

Deduce that θ is infective.

(Remark. In class, we discussed the case where A is an integral domain.)

