Homework 2
Friday, January 19, 2018

1. Prove that the following polynomials are irreducible:
(a) $x^{p-1}+x^{p-2}+\cdots+1$ in $Q[x]$ where p is a prime number.
(b) $x^{p-1}+y^{2} x^{p-2}+y^{2} x^{p-3}+\cdots+y^{2}$ in $\mathbb{Q}[x, y]$
where p is a prime number.
(c) $1+\frac{x}{1!}+\frac{x^{2}}{2!}+\cdots+\frac{x^{n}}{n!}$ in $\mathbb{Q}[x]$ (you are allowed to use famous theorems about
(d) $x^{n}-y$ in $F[x, y]$.
(e) $x^{2}+y^{2}-2$ in $F[x, y]$ where $\operatorname{char}(F) \neq 2$.
(f) $x^{4}+12 x^{3}-9 x+6$ in $\mathbb{Q}[i][x]$.
2. Prove that $x^{P^{n}}-x+a$ does not have a zero in Q if p is prime, $a \in \mathbb{Z}$, and $p \nmid a$.
3.(a) Prove that in $(\mathbb{Z} / p \mathbb{Z})[x]$ we have $x(x-1) \cdots(x-(p-1))=x^{p}-x$, where p is prime.
(b) Deduce that $(p-1)!\equiv-1(\bmod p)$.

Homework 2
4. (a) Let G be a finite group. Suppose for any $n \in \mathbb{Z}^{+},\left|\left\{g \in G \mid g^{n}=e\right\}\right| \leq n$. Prove that G is cyclic.
(b) Let F be a finite field. Prove that F^{x} is cyclic.
(Hint for (a). Let $\Psi(d):=|\xi g \in G| \circ(g)=d \xi \mid$.
Step 1. Show, if $\circ(g)=d$, then $h^{d}=e \Longleftrightarrow h=g^{i}$ for some $0 \leq 2 \leq d-1$.
Step 2. Show, if $\psi(d) \neq 0$, then $\psi(d)=\phi(d)$ where ϕ is the Enter ϕ-function.
Step 3. $G=\underset{d| | G \mid}{U g \in G \mid \circ(g)=d\} \text { implies }, ~}$

$$
\sum_{d| | G \mid} \psi(d)=|G|
$$

Step 4. Use steps 2, 3, and the fact that $\sum_{d \mid m} \phi(d)=m$, to deduce $\forall d||G|$ we have $\Psi(d)=\phi(d)$. In part. $\Psi(|G|) \neq 0$.)

Homework 2
Friday, January 19, 2018 11:37 PM
5. Let D be a finite division ring. In this problem you will prove D is a field.
(a) For any $a \in D$, let $C_{D}(a):=\{d \in D \mid a d=d a\}$.

Prove that $C_{D}(a)$ is a division ring.
(b) Convince yourself that Z(D) is a field. Suppose $|Z(D)|=q$. Deduce $C_{D}(a)$ is a power of q.
(b) Use class formula for D^{x} to convince yourself.

$$
\left|Z(D)^{x}\right|+\sum_{\substack{a \in \text { conjug. } \\ \text { class } \\ \text { red }}}\left[D^{x}: C_{D}(a)^{x}\right]=\left|D^{x}\right|
$$

Use the following fact without proof:

$$
\Phi_{n}(x):=\prod_{\substack{(i, n)=1 \\ 1 \leq i \leq n}}\left(x-\zeta_{n}^{i}\right) \in \mathbb{Z}[x] \text { and }
$$

for $m / n, m<n, \quad x^{n}-1=\left(x^{m}-1\right) h(x) \Phi_{n}(x)$ for some $h(x) \in \mathbb{Z}[x]$, and $(*)$ to deduce $\Phi(q) \mid q-1$; and show it is a contradi.

