Homework 2
Friday, January 19, 2018 940 PM
1. Prove that the following polynomials are irreducible:
(a)
$$x^{p-1} + x^{p-2}$$
 in Q[X] where φ is a prime number.
(b) $x^{p-1} + y^{2}x^{p-2} + y^{2}x^{p-3} + \dots + y^{2}$ in Q[X,y]
where φ is a prime number.
(c) $1 + \frac{x}{4!} + \frac{x^{2}}{2!} + \dots + \frac{x^{n}}{n!}$ in Q[X] (you are allowed to use
famous theorems about
(d) $x^{n} - y$ in FIX,y].
(e) $x^{2} + y^{2} - 2$ in FIX,y] where $char(F) \neq 2$.
(f) $x^{4} + 12x^{3} - 9x + 6$ in Q[i][X].
2. Prove that $x^{n} - x_{+}a$ does not have a zero in Q if
p is prime, aeZ , and $p \neq a$.
3.(a) Prove that in (Z/p_{Z}) [X] where p is prime.
(b) Deduce that $(p-1)! \equiv -1 \pmod{p}$.

Homework 2 Friday, January 19, 2018 11:24 PM 4. (a) Let G be a finite group. Suppose for any $n \in \mathbb{Z}^+$, $|\xi g \in G| g^n = e\xi| \leq n$. Prove that G is cyclic. (b) Let F be a finite field. Prove that F is cyclic. $(\underbrace{\text{Hint for (a). Let }}_{(d):=} | \underbrace{\xigeG} | \circ (g) = d \underbrace{\xi} |.$ Step 1. Show, if o(g)=d, then $h=e \iff h=g^{2i}$ for some $o \le i \le d-1$. Step 2. Show, if $24(d) \neq 0$, then $24(d) = \varphi(d)$ where \$ is the Enter \$-function. Step 3. G = Ll ZgEG | og) = dZ implies $\sum_{d \mid i \in I} \mathcal{L}(d) = |G| .$ Step 4. Use steps 2, 3, and the fact that $\sum \phi(d) = m$, to deduce $\forall d||q| we$ have $2F(d) = \bigoplus(d)$. In part. $2F(IGI) \neq 0$.)

Homework 2 Friday, January 19, 2018 11:37 PM 5. Let D be a finite division ring. In this problem you will prove D is a field. a) For any acD, let C(a) := {deD | ad=dag. Prove that C (a) is a division ring. (b) Convince yourself that Z(D) is a field. Suppose |Z(D)| = q. Deduce $C_{D(a)}$ is a power of q. (b) Use class formula for D' to convince yourself. $|Z(D)^{x}| + \sum_{\alpha \in Conjug} [D^{x}:C_{\alpha} \alpha^{x}] = |D^{x}|$ (*) Use the following fact without proof: $\Phi_n(x) := \prod (x - \zeta_n^{i}) \in \mathbb{Z}[x] \text{ and }$ for $m|n, m< n, x^n-1 = (x^m-1) h(x) = (x)$ for some hox) = ZIX, and (*) to deduce ₱(q) | q-1; and show it is a contradi.