Homework 1
Friday, January 12, 2018

1. Let n be a square-free integer more than 3 . Let

$$
\mathbb{Z}[\sqrt{-n}]=\{a+\sqrt{-n} b \mid a, b \in \mathbb{Z}\} .
$$

(a) Prove that $2, \sqrt{-n}, 1 \pm \sqrt{-n}$ are all irreducible in $\mathbb{Z}[\sqrt{-n}]$.
(b) Find an element in R which is irreducible and not prime
(c) Show that $\mathbb{Z}[\sqrt{-n}]$ is not a UFD.
2. Suppose p is an odd prime number. Show that the following are equivalent.
(a) p is not irreducible in $\mathbb{Z}[i]$.
(b) $\exists a, b \in \mathbb{Z}, \quad p=a^{2}+b^{2}$.
(c) $x^{2}=-1(\bmod p)$ has a solution.
3. Let D be a UFD and F be its field of fractions.
(a) Suppose $\frac{r}{s}$ is a zero of $a_{n} x^{n}+\cdots+a_{1} x+a_{0}$ where $r, s \in D$ and $\operatorname{gcd}(r, s)=[1]$. Prove that $r \mid a_{0}$ and $s \mid a_{n}$. In particular, if $a \in F$ is a zero of a manic poly. in $D[x]$, then $a \in D$. (we say a UFD is integrally closed.)

Homework 1
Friday, January 12, 2018
(b) Show that $\mathbb{Z}[2 \sqrt{2}]=\{a+2 \sqrt{2} b \mid a, b \in \mathbb{Z}\}$ is not a UFD. (Hint. $(\sqrt{2})^{2}-2=0$.)
4. Let $\left.A=\mathbb{Z}+x \mathbb{Q}[x]=\xi a_{n} x^{n}+\cdots+a_{1} x+a_{0} \mid a_{0} \in \mathbb{Z}, a_{1}, \cdots, a_{n} \in \mathbb{Q}\right\}$.
(a) Show that $f(x) \in A$ is irreducible \Leftrightarrow either $f(x)= \pm p$ where p is a prime number or $f(x)$ is irred in $Q[x]$ and $f(0)= \pm 1$.
(b) Show that $x \in A$ cannot be written as a product of finitely many irreducibles in A. Thus A is not a UFD.
(c) We proved in class that, if an integral domain is Noetherian, then any non-zero element can be written as a product of irreducible. And A has an ideal that is not finitely generated. Find an explicit ideal $\pi \nabla A$ that is not finitely generated.
5. A Bezout domain is an integral domain D in which $\forall a, b \in D, \exists c \in D$ st. $\langle a, b\rangle=\langle c\rangle$.
(a) Prove that an integral domain D is a Bezout domain

Homework 1
if and only if $\forall a, b \in D \backslash\{0\} \exists d \in D$ st.
(i) d is a good. of a and b.
(ii) $d \in\langle a, b\rangle$.
(b) Prove that every finitely generated ideal of a Bezout domain is principal (In particular a Noetherian Bezout domain is a PID.)
(c) Prove that D is a PID if and only if it is both a UFD and a Bezont domain
(Hint. For $0 \neq \pi<D$, let $a \in \pi$ be an element with smallest number of irreducible factors.
$\forall b \in D$, show $\langle a, b\rangle=\langle a\rangle$.)
6. Let $f(x) \in\left(\mathbb{Z} / p_{\mathbb{Z}}\right)[x]$ be a polynomial of degree n. Prove that $\left(\mathbb{Z} / P_{\mathbb{Z}}\right)[x] /\langle f(x)\rangle$ has p^{n} elements. (Hint. Use division algorithm.)
7. Let A be the subring of $\mathbb{Q}[x, y]$ which is generated by $x, x y, x y^{2}, \ldots$; that means $A=\mathbb{Q}\left[x, x y, x y^{2}, x y^{3}, \ldots\right]$. Prove that A is NOT Noetherian.

